Loading...
Search for: synchronization
0.013 seconds
Total 284 records

    I/Q mismatch calibration of a transmitter using local quadrature oscillator

    , Article Microelectronics Journal ; Volume 55 , 2016 , Pages 82-91 ; 00262692 (ISSN) Zare Fatin, G ; Savadi Osgooei, M ; Fotowat Ahmady, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper a calibration technique for I/Q mismatch of a transmitter is introduced. The calibration technique is based on the fact that all mismatches in I/Q paths can be modeled as the mismatch of the local oscillator quadrature outputs. Based on this fact, a simple tuning scheme for quadrature output of the oscillator is used to calibrate the mismatch of the I/Q transmitter. In addition to quadrature oscillator, gain mismatch of the I/Q paths and LO feedthorugh and leakage is calibrated by using a tunable linear Gm cell in the base band part. In order to demonstrate the proposed technique, a transmitter with 1.8 GHz carrier frequency is designed with auxiliary blocks to extract and... 

    An efficient synchronization circuit in multi-rate SDH networks

    , Article Arabian Journal for Science and Engineering ; Volume 39, Issue 4 , April , 2014 , Pages 3101-3109 ; ISSN: 13198025 Zare, M ; Hessabi, S ; Goudarzi, M ; Sharif University of Technology
    Abstract
    Single-rate synchronous digital hierarchy (SDH) networks contain one master block and several slave blocks and the slaves will synchronize themselves by the master clock frequency. However, the clock frequencies of master and slaves are different in multi-rate SDH networks and hence, the slaves require a synchronization circuit to match their clock frequencies with the master clock frequency. This research presents an efficient synchronization circuit for such networks. The proposed circuit occupies smaller area than the prior circuit and requires no clock alignment for its implementation. The circuit constraints are described and the maximum clock frequencies of master and slaves are... 

    Throughput enhancement for repetitive internal cores in latency-insensitive systems

    , Article IET Computers and Digital Techniques ; Volume 6, Issue 5 , 2012 , Pages 342-352 ; 17518601 (ISSN) Zare, M ; Hessabi, S ; Goudarzi, M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Latency-insensitive design (LID) is a correct by-construction methodology for system on chip design that prevents multiple iterations in synchronous system design. However, one problem in the LID is system throughput reduction. In this study, a protocol is proposed to increase the throughput of internal cores in the latency-insensitive systems when there are several repetitive structures. The validation of the protocol is checked for latency equivalency in various system graphs. A shell wrapper to implement the protocol is described and superimposed logic gates for the shell wrapper are formulated. Simulation is performed for 12 randomly generated systems and four actual systems. The... 

    A new power management control strategy for a MV microgrid with both synchronous generator and inverter-interfaced distributed energy resources

    , Article IEEE International Symposium on Industrial Electronics ; 1- 4 June , 2014 , pp. 2529-2534 ; ISBN: 978-147992399-1 Zangeneh, M ; Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    Abstract
    Control strategies of a microgrid which includes both synchronous generators and converter-based distribution generation (DG) units must be designed such that effective operation of the microgrid is achieved. The main objective of this paper is to develop a high performance control strategy for an islanded medium voltage (MV) microgrid consisting of inverter and non-inverter interfaced DG units. A new control method for the synchronous generator in an islanded microgrid is proposed based on a virtual droop scheme. The proposed strategy can effectively manage the real and reactive powers of the microgrid among the inverter and non-inverter based DG units. The steady state and dynamic... 

    Analytical investigation on fundamental electrical characteristics of large air-gap superconducting synchronous machine

    , Article Journal of Magnetics ; Volume 18, Issue 3 , 2013 , Pages 260-267 ; 12261750 (ISSN) Yazdanian, M ; Elhaminia, P ; Zolghadri, M. R ; Fardmanesh, M ; Sharif University of Technology
    2013
    Abstract
    In this paper a general 2-D model of a large air-gap synchronous machine either with non-magnetic or magnetic core rotor is investigated and electrical characteristics of the machine are analytically calculated. Considering the general model, analytical equations for magnetic field density in different regions of the large air-gap machine are calculated. In addition, self and mutual inductances in the proposed model of the machine have been developed, which are the most important parameters in the electromagnetic design and transient analysis of synchronous machines. Finite element simulation has also been performed to verify the obtained results from the equations. Analytical results show... 

    Analytical modeling of magnetic flux in superconducting synchronous machine

    , Article IEEE Transactions on Applied Superconductivity ; Volume 23, Issue 1 , 2013 ; 10518223 (ISSN) Yazdanian, M ; Elhaminia, P ; Zolghadri, M. R ; Fardmanesh, M ; Sharif University of Technology
    2013
    Abstract
    A general model for superconducting synchronous machines in which the rotor can be considered as a magnetic or a nonmagnetic material is proposed and analytically investigated. Analytical equations for magnetic flux in different regions of the machine have been developed. Furthermore, nonlinear magnetization of the iron core is studied. In order to solve the equations in the case of the iron saturation, a reiterative algorithm is proposed. Finite-element simulation has also been performed to verify the equations and the proposed algorithm. The obtained analytical results show good agreement with finite-element method results  

    Adaptive synchronization of uncertain fractional-order chaotic systems using sliding mode control techniques

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 234, Issue 1 , 2020 , Pages 3-9 Yaghooti, B ; Siahi Shadbad, A ; Safavi, K ; Salarieh, H ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this article, an adaptive nonlinear controller is designed to synchronize two uncertain fractional-order chaotic systems using fractional-order sliding mode control. The controller structure and adaptation laws are chosen such that asymptotic stability of the closed-loop control system is guaranteed. The adaptation laws are being calculated from a proper sliding surface using the Lyapunov stability theory. This method guarantees the closed-loop control system robustness against the system uncertainties and external disturbances. Eventually, the presented method is used to synchronize two fractional-order gyro and Duffing systems, and the numerical simulation results demonstrate the... 

    Performance of the brushless doubly-fed machine under normal and fault conditions

    , Article IET Electric Power Applications ; Volume 6, Issue 9 , Volume 6, Issue 9 , 2012 , Pages 621-627 ; 17518660 (ISSN) Tohidi, S ; Zolghadri, M. R ; Oraee, H ; Tavner, P ; Abdi, E ; Logan, T ; Sharif University of Technology
    2012
    Abstract
    In this study, the steady-state operation of the brushless doubly-fed machine (BDFM) in various modes is physically elaborated and the active power flow and torque analysis are presented for each operating mode alongside confirmatory experimental results on a 4/8 pole D160 size machine. The machine behaviour in asynchronous operating modes is described similar to the conventional induction machines with corresponding pole numbers. Moreover, its performance in synchronous mode is shown to be similar to synchronous machines. On the basis of the above, the BDFM performance is further analysed under two possible fault conditions: first, a controller or converter fault leading to loss of... 

    Comments on chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control

    , Article IEEE Transactions on Fuzzy Systems ; Volume 20, Issue 5 , February , 2012 , Pages 993-995 ; 10636706 (ISSN) Tavazoei, M. S ; Sharif University of Technology
    2012
    Abstract
    In this letter, it is shown that some of the equalities that were used in the proof of the main theorem of the paper given by Lin and Lee are not consistent with fractional calculus principles. Simple counterexamples are provided to confirm this point. Moreover, correct versions of equations that were derived in the mentioned theorem are presented. Based on these corrections, the synchronization scheme proposed in the mentioned paper is investigated  

    Synchronization of chaotic fractional-order systems via active sliding mode controller

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 387, Issue 1 , 2008 , Pages 57-70 ; 03784371 (ISSN) Tavazoei, M. S ; Haeri, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, we propose a controller based on active sliding mode theory to synchronize chaotic fractional-order systems in master-slave structure. Master and slave systems may be identical or different. Based on stability theorems in the fractional calculus, analysis of stability is performed for the proposed method. Finally, three numerical simulations (synchronizing fractional-order Lü-Lü systems, synchronizing fractional order Chen-Chen systems and synchronizing fractional-order Lü-Chen systems) are presented to show the effectiveness of the proposed controller. The simulations are implemented using two different numerical methods to solve the fractional differential equations. © 2007... 

    Determination of active sliding mode controller parameters in synchronizing different chaotic systems

    , Article Chaos, Solitons and Fractals ; Volume 32, Issue 2 , 2007 , Pages 583-591 ; 09600779 (ISSN) Tavazoei, M. S ; Haeri, M ; Sharif University of Technology
    2007
    Abstract
    In this paper, we propose an algorithm to determine the active sliding mode controller parameters in synchronizing different chaotic systems. The resulted control parameters not only secure stability of the error systems, they can also be adjusted to obtain the desired rate of error convergence. Numerical simulations are presented to evaluate effectiveness of the proposed algorithm where the Lü system is implemented as the response (slave) system. © 2005 Elsevier Ltd. All rights reserved  

    Cuckoo-PC: An evolutionary synchronization-aware placement of SDN controllers for optimizing the network performance in WSNs

    , Article Sensors (Switzerland) ; Volume 20, Issue 11 , 2020 , Pages 1-19 Tahmasebi, S ; Safi, M ; Zolfi, S ; Maghsoudi, M. R ; Faragardi, H. R ; Fotouhi, H ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Due to reliability and performance considerations, employing multiple software-defined networking (SDN) controllers is known as a promising technique in Wireless Sensor Networks (WSNs). Nevertheless, employing multiple controllers increases the inter-controller synchronization overhead. Therefore, optimal placement of SDN controllers to optimize the performance of a WSN, subject to the maximum number of controllers, determined based on the synchronization overhead, is a challenging research problem. In this paper, we first formulate this research problem as an optimization problem, then to address the optimization problem, we propose the Cuckoo Placement of Controllers (Cuckoo-PC) algorithm.... 

    SYNCOP: An evolutionary multi-objective placement of SDN controllers for optimizing cost and network performance in WSNs

    , Article Computer Networks ; Volume 185 , 2021 ; 13891286 (ISSN) Tahmasebi, S ; Rasouli, N ; Kashefi, A. H ; Rezabeyk, E ; Faragardi, H. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Due to the highly dynamic nature of Wireless Sensor Networks (WSN), Software-Defined Network (SDN) is a promising technology to ease network management by providing a logically centralized control plane. It is a common approach to employ multiple SDN controllers to form a physically distributed SDN to achieve better fault tolerance, boost scalability, and enhance performance. Despite physical distribution, since the notion behind SDN is to logically centralize network management, it is essential to provide a consistent view of the network's state for all controllers. Deploying multiple controllers result in higher synchronization and deployment cost. Since network performance and... 

    Polynomial-time fence insertion for structured programs

    , Article 33rd International Symposium on Distributed Computing, DISC 2019, 14 October 2019 through 18 October 2019 ; Volume 146 , 2019 ; 18688969 (ISSN); 9783959771269 (ISBN) Taheri, M ; Pourdamghani, A ; Lesani, M ; Suomela J ; Sharif University of Technology
    Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing  2019
    Abstract
    To enhance performance, common processors feature relaxed memory models that reorder instructions. However, the correctness of concurrent programs is often dependent on the preservation of the program order of certain instructions. Thus, the instruction set architectures offer memory fences. Using fences is a subtle task with performance and correctness implications: using too few can compromise correctness and using too many can hinder performance. Thus, fence insertion algorithms that given the required program orders can automatically find the optimum fencing can enhance the ease of programming, reliability, and performance of concurrent programs. In this paper, we consider the class of... 

    Maximum torque per ampere control of permanent magnet synchronous motor using genetic algorithm

    , Article Telkomnika ; Volume 9, Issue 2 , 2011 , Pages 237-244 ; 16936930 (ISSN) Tahami, F ; Nademi, H ; Rezaei, M ; Sharif University of Technology
    Abstract
    Permanent magnet synchronous motor (PMSM) drives have many advantages over other drives, i.e. high efficiency and high power density. Particularly, PMSMs are epoch-making and are intensively studied among researchers, scientists and engineers. This paper deals with a novel high performance controller based on genetic algorithm. The scheme allows the motor to be driven with maximum torque per ampere characteristic. In this paper assuming an appropriate fitness function, the optimum values for d-axis current of motor set points at each time are found and then applied to the controller. Simulation results show the successful operation of the proposed controller  

    A high-performance vector-controlled PMSM drive with maximum torque per ampere operation

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; January , 2008 , Pages 254-258 ; 9781424424054 (ISBN) Tahami, F ; Nademi, H ; Rezaei, M ; Sharif University of Technology
    2008
    Abstract
    Permanent magnet synchronous motor (PMSM) drives have many advantages over other drives, e.g. high efficiency and high power density. Particularly, permanent magnet synchronous motors are epoch-making and are intensively studied among researchers, scientists and engineers. This paper deals with a novel high performance controller based on genetic algorithm. The scheme allows the motor to be driven with maximum torque per ampere characteristic. In this paper assuming an appropriate fitness function, the optimum values for d-axis current of motor set points at each time are found and then applied to the controller. Simulation results show the successful operation of the proposed controller. ©... 

    A sensor fault tolerant drive for interior permanent-magnet synchronous motors

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; January , 2008 , Pages 283-288 ; 9781424424054 (ISBN) Tahami, F ; Nademi, H ; Rezaei, M ; Sharif University of Technology
    2008
    Abstract
    The study reported in this paper deals with the problem of developing a controller with tolerance to current sensor faults. To achieve this goal, two control strategies are considered. In the first method, field oriented control and a developed observer are used in case of no fault. The second approach is concerned with fault tolerant strategy based on an observer for faulty conditions. Current sensors failures are detected and the current will be estimated successfully in order to allow continuous operation of the vector control. Based on the motor model, currents can be estimated using a nonlinear observer. A decoupling current vector control strategy is developed to ensure high... 

    Synchronizability of EEG-based functional networks in early alzheimer's disease

    , Article IEEE Transactions on Neural Systems and Rehabilitation Engineering ; Volume 20, Issue 5 , 2012 , Pages 636-641 ; 15344320 (ISSN) Tahaei, M. S ; Jalili, M ; Knyazeva, M. G ; Sharif University of Technology
    IEEE  2012
    Abstract
    Recently graph theory and complex networks have been widely used as a mean to model functionality of the brain. Among different neuroimaging techniques available for constructing the brain functional networks, electroencephalography (EEG) with its high temporal resolution is a useful instrument of the analysis of functional interdependencies between different brain regions. Alzheimer's disease (AD) is a neurodegenerative disease, which leads to substantial cognitive decline, and eventually, dementia in aged people. To achieve a deeper insight into the behavior of functional cerebral networks in AD, here we study their synchronizability in 17 newly diagnosed AD patients compared to 17 healthy... 

    Nonlinear power balance control of a SPA hydraulic hybrid truck

    , Article 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2009, Singapore, 14 July 2009 through 17 July 2009 ; 2009 , Pages 805-810 ; 9781424428533 (ISBN) Taghavipour, A ; Alasty, A ; Saadat Foumani, M ; Sharif University of Technology
    2009
    Abstract
    An integrated procedure for mathematical modeling and power control balance for a SPA (Split Parallel Architecture) hydraulic hybrid vehicle is presented in this paper. Dynamic mathematical model of the powertrain is constructed firstly, which includes five modules: diesel engine, traction motor, starter, loading pump and accumulator. Based on the mathematic model of control modes a stability analysis is done. For some control modes a Sliding Mode Control is designed, which uses full-states closed-loop feedback. The paper finally illustrates and discusses the results of simulation. The results show that the performance and stability of control modes are proper and a power control strategy... 

    Modeling of a BDFM-based wind turbine under unbalanced grid voltage dips

    , Article 2011 IEEE Power and Energy Conference at Illinois, PECI 2011 ; 2011 ; 9781424480500 (ISBN) Sotoodeh, P ; Gorgin, H ; Oraee, H ; Sharif University of Technology
    2011
    Abstract
    Brushless Doubly-Fed Machine (BDFM) is a machine which incorporates the robustness of the squirrel cage induction machine while having the speed and power factor control of a synchronous machine. A special kind of rotor called Nested-Loop rotor plays an important part in the BDFM, coupling the two stator fields. In future BDFM will share a large part in wind power market. This paper presents a mathematical model of Brushless Doubly-Fed Machine (BDFM) based on Stator Flux Orientation (SFO) in the positive and negative reference frames under unbalanced grid voltage conditions