Loading...
Search for: system-stability
0.008 seconds
Total 249 records

    On the suitability of modeling approaches for power electronic converters

    , Article International Symposium on Industrial Electronics 2006, ISIE 2006, Montreal, QC, 9 July 2006 through 13 July 2006 ; Volume 2 , 2006 , Pages 1486-1491 ; 1424404975 (ISBN); 9781424404971 (ISBN) Poshtan, M ; Kaboli, S ; Mahdavi, J ; Sharif University of Technology
    2006
    Abstract
    This paper is a summary and in-depth evaluation of some popular models for power electronic converters. Proper examples are given to support the evaluation with a complete comparison between the actual and simulated results. The paper presents the effort behind the design and analysis of DC-DC Converters and discuses their features. Some advantages and disadvantages of the studied models and the complicities of the nonlinear structure of the switching function of the converters are explained here. The paper offers some useful criteria for future selection and development on different DC-DC Converters. © 2006 IEEE  

    On piecewise affined large-signal modeling of PWM converters

    , Article 2006 IEEE International Conference on Industrial Technology, ICIT, Mumbai, 15 December 2006 through 17 December 2006 ; 2006 , Pages 1419-1423 ; 1424407265 (ISBN); 9781424407262 (ISBN) Tahami, F ; Mobed, M ; Molayee, B ; Sharif University of Technology
    2006
    Abstract
    The most common technique for analysis and control of power electronics circuits is switch averaging. The model is not linear however, and often results in a multiplicative term in the state equations. Hence, it is common to perform a small signal linearization of the model about an operating point. Models obtained with such method involve considerable approximation, and produce results that are limited for higher performance designs. In this paper a Piecewise Affine Approximation (PWA) technique is introduced for modeling of switched circuits. Modeling of a DC-DC buck-boost converter is presented as an illustrative example to show the favorable properties and broad utility of this approach.... 

    Adaptive synchronization of chaotic systems with uncertain parameters

    , Article 2006 SICE-ICASE International Joint Conference, Busan, 18 October 2006 through 21 October 2006 ; 2006 , Pages 4419-4422 ; 8995003855 (ISBN); 9788995003855 (ISBN) Khademian, B ; Haeri, M ; Sharif University of Technology
    2006
    Abstract
    In this paper, an approach for adaptive synchronization of uncertain chaotic systems is proposed using adaptive active control. According to the Lyapunov stability theorem, an adaptive control law is derived to make the states of two identical chaotic systems asymptotically synchronized. Simulation results are presented to show the effectiveness of the proposed method. © 2006 ICASE  

    Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem

    , Article Engineering with Computers ; 2021 ; 01770667 (ISSN) Huang, X ; Hao, H ; Oslub, K ; Habibi, M ; Tounsi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In the current paper, vibrational and critical circular speed characteristics of a functionally graded (FG) rotary microdisk is examined considering a continuum nonlocal model called modified couple stress (MCS) model, for the first time in the literature. The generalized differential quadrature (GDQ) approach and variational method are used for deriving and solving the non-classical final relations. The FG size-dependent micro-sized disk’s final relations and corresponding boundary conditions (BCs) are achieved on the basis of the higher-order shear deformation (HSD) model. Then, a parametric analysis has been conducted to analyze the influences of the length scale factor, circumferential,... 

    An integrated best–worst decomposition approach of nonlinear systems using gap metric and stability margin

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 235, Issue 4 , 2021 , Pages 486-502 ; 09596518 (ISSN) Ahmadi, M ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    This article uses gap metric method to design a multi-model controller for nonlinear systems. In order to decompose the nonlinear system into a reduced nominal local models bank as much as possible, and assure the closed-loop robust stability and performance, the decomposition and designing of local controllers are integrated. To this end, robust stability, performance, and gap metric are incorporated to build a binary distance matrix that supports defining the driving and dependence powers for each local model. Then a best–worst analysis is employed considering the driving and dependence powers to find out the nominal local models. The proposed approach screens the value of all local models... 

    An integrated best–worst decomposition approach of nonlinear systems using gap metric and stability margin

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 235, Issue 4 , 2021 , Pages 486-502 ; 09596518 (ISSN) Ahmadi, M ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    This article uses gap metric method to design a multi-model controller for nonlinear systems. In order to decompose the nonlinear system into a reduced nominal local models bank as much as possible, and assure the closed-loop robust stability and performance, the decomposition and designing of local controllers are integrated. To this end, robust stability, performance, and gap metric are incorporated to build a binary distance matrix that supports defining the driving and dependence powers for each local model. Then a best–worst analysis is employed considering the driving and dependence powers to find out the nominal local models. The proposed approach screens the value of all local models... 

    Application of neural networks to decentralized control of robot manipulators with high degree of freedom

    , Article ICTAI 2005: 17th IEEE International Conference on Tools with Artificial Intelligence, ICTAI'05, Hong Kong, 14 November 2005 through 16 November 2005 ; Volume 2005 , 2005 , Pages 484-488 ; 10823409 (ISSN); 0769524885 (ISBN); 9780769524887 (ISBN) Sadati, N ; Elhamifar, E ; Sharif University of Technology
    2005
    Abstract
    In this paper a neural network decentralized control for trajectory tracking of robot manipulators is developed. The proposed decentralized control allows the overall closed-loop system to be stabilized while making the tracking error to be uniformly ultimately bounded (UUB), without having any prior knowledge of the robot manipulator dynamics. The interconnections in the dynamic equations of each subsystem are considered with unknown nonlinear bounds. The RBF neural networks (RBFNNs) are proposed to model the unknown nonlinear dynamics of the robots and the interconnection terms. Using Lyapunov method, the stability of the overall system is investigated, © 2005 IEEE  

    Identification and adaptive control of the uncertain lorenz system

    , Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 74 DSC, Issue 2 PART B , 2005 , Pages 1105-1111 ; 0791842169 (ISBN); 9780791842164 (ISBN) Pishkenari, H. N ; Shahrokhi, M ; Sharif University of Technology
    2005
    Abstract
    In this paper an identification method which can estimate the unknown parameters of a general nonlinear system based on three techniques (gradient, least-squares and rapid identification) has been developed. The stability of the proposed schemes has been shown using the Lyapunov stability theorem. The properties of each identification technique have been discussed briefly. Open loop identification of the Lorenz chaotic system is presented to show the effectiveness of the proposed approach. To illustrate the efficiency of the identification method for control purposes, it has been applied for controlling the well-known Lorenz system. By exploiting the property of the system a novel... 

    Application of extended DMC for nonlinear MIMO systems

    , Article Computers and Chemical Engineering ; Volume 29, Issue 9 , 2005 , Pages 1867-1874 ; 00981354 (ISSN) Haeri, M ; Zadehmorshed Beik, H ; Sharif University of Technology
    2005
    Abstract
    In this paper, an extended approach to the nonlinear DMC algorithm is proposed, which can handle constrained and MIMO systems under some defined conditions. This extension also admits higher control horizon, M and prediction horizon, P that are required to increase the performance of the controller in the most practical applications. Simulation results of the proposed method in the control of a stirred tank reactor with 2 inputs, 2 outputs nonlinear model and also a power unit nonlinear model with 3 inputs, 3 outputs are presented to illustrate effectiveness of the method and its justification. © 2005 Elsevier Ltd. All rights reserved  

    Stability analysis and nonlinear control of a miniature shape memory alloy actuator for precise applications

    , Article Mechatronics ; Volume 15, Issue 4 , 2005 , Pages 471-486 ; 09574158 (ISSN) Shameli, E ; Alasty, A ; Salaarieh, H ; Sharif University of Technology
    2005
    Abstract
    This paper presents a new approach for controlling SMA actuators with hysteresis compensation by using two energy based semi active controllers. SMA actuators exhibit severe hysteresis that is often responsible for position inaccuracy in a regulation or tracking system. In this paper, a SMA actuator model is recalled from [Alasty A, Shameli E. Dynamic modeling of a new varying stress SMA actuator for precise applications. In: Proceedings of 2004 IEEE international conference on mechatronics (ICM'04). Istanbul, Turkey, June 3-5, 2004]. Then, a PID and a novel PID-P3 controllers have been suggested to perform a position control. To investigate the stability of controlled system the... 

    An adaptive neural network sliding mode controller for robotic manipulators

    , Article 2005 IEEE International Conference on Industrial Technology, ICIT 2005, Hong Kong, 14 December 2005 through 17 December 2005 ; Volume 2005 , 2005 , Pages 1246-1251 ; 0780394844 (ISBN); 9780780394841 (ISBN) Sadati, N ; Ghadami, R ; Bagherpour, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2005
    Abstract
    In this paper, an adaptive neural network sliding mode controller (ANNSMC) for robotic manipulators is proposed to alleviate the problems met in practical implementation using classical sliding mode controllers. The chattering phenomenon is eliminated by substituting single-input single-output radial-basis-function neural networks (RBFNN's), which are nonlinear and continuous, in lieu of the discontinuous part of the control signals present in classical forms. The weights of the hidden layer of the RBFNN's are updated in an online manner to compensate the system uncertainties. The key feature of this scheme is that prior knowledge of the system uncertainties is not required to guarantee the... 

    Gain and Phase Margins in a Class of Nonlinear Systems

    , M.Sc. Thesis Sharif University of Technology Delavar, Abolfazl (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    The stability of dynamic systems has long been discussed in the theory of control and many people and experts have researched in this field and important results have been obtained from their research. In the real world, systems stability is the premise of controlling their behavior. In fact, systems that are unstable will not be controllable without stability. Therefore, the stability of the systems is discussed and at the same time the control expectations of the system will be raised. The systems of the surrounding world behave nonlinearly; Therefore, their exact stability is not debatable with linear approaches and requires stronger mathematics and attention to specific behaviors of... 

    A novel algorithm to identify power swing based on superimposed measurements

    , Article 2012 11th International Conference on Environment and Electrical Engineering, EEEIC 2012 - Conference Proceedings ; 2012 , Pages 1109-1113 ; 9781457718281 (ISBN) Afzali, M ; Esmaeilian, A ; Sharif University of Technology
    IEEE  2012
    Abstract
    This paper describes a novel adaptive out-of-step detection algorithm based on dissimilar measurement approaches. Two superimposed measurements enable the algorithm to detect fast as well as slow power swings. Both methods recognize power swings right from the beginning of the swing impedance movement. The first principle is based on continuous rate-of-change measurement of the traveling swing impedance. The second method continuously monitors the speed and the shape of the swing impedance trajectory. The algorithm detects extremely high swing frequencies of up to 7 Hz and maintains functionality under single-pole open conditions, i.e. auto-reclose dead time. The associated distance relay... 

    Stable regions in the parameter space of delays for LTI fractional-order systems with two delays

    , Article Signal Processing ; Volume 107 , February , 2015 , Pages 415-424 ; 01651684 (ISSN) Mesbahi, A ; Haeri, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    This paper studies fractional-order systems of retarded type with two independent delays, and determines the stability regions in spaces of delays. In this approach, an auxiliary polynomial is employed to calculate all purely imaginary roots of the characteristic equation of the system on the imaginary axis. Since roots of the characteristic equation are continuous with respect to delays, these purely imaginary roots determine the stability regions in delay space. Also, the necessary and sufficient condition for stability independent of delays is developed for the systems. Furthermore, a simple inequality constraint is established to obtain pure imaginary poles of the scalar systems.... 

    LMI-based sufficient conditions for robust stability and stabilization of LTI-fractional-order systems subjected to interval and polytopic uncertainties

    , Article Transactions of the Institute of Measurement and Control ; Volume 37, Issue 10 , 2015 , Pages 1207-1216 ; 01423312 (ISSN) Adelipour, S ; Abooee, A ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this paper, by introducing a new general state-space form for uncertain linear time-invariant fractional-order systems subjected to interval and polytopic uncertainties, two problems including robust stability analysis and robust stabilization of the presented systems are investigated. Subsequently, two sufficient conditions in terms of several linear matrix inequalities for the problems mentioned are concluded as two separate theorems. It is assumed that the fractional order α is a known constant belonging to 0 < α < 1. Simulation results of two different numerical examples demonstrate that the provided sufficient conditions are applicable and effective for tackling robust stability and... 

    Adaptive control of robot manipulators including actuator dynamics and without joint torque measurement

    , Article 2010 IEEE International Conference on Robotics and Automation, ICRA 2010, Anchorage, AK, 3 May 2010 through 7 May 2010 ; 2010 , Pages 4639-4644 ; 10504729 (ISSN) ; 9781424450381 (ISBN) Salimi Khaligh, Y ; Namvar, M ; Sharif University of Technology
    2010
    Abstract
    Ignoring actuator dynamics in control of rigid manipulators can in practice result in performance degradation or loss of system stability. However, consideration of actuator dynamics usually requires measurement of robot joint torques. This paper addresses motion tracking control of an n-DOF rigid robot by taking into account its actuator dynamics. Joint torque measurement is avoided by using an adaptive observer. The backstepping technique is adopted to develop a dynamically smooth adaptive nonlinear controller dealing with uncertainties in manipulator and actuator dynamics. Semi-global convergence of motion tracking errors as well as torque estimation error are proven without any... 

    Multivariable servomechanism controller for autonomous operation of a distributed generation unit: design and performance evaluation

    , Article IEEE Transactions on Power Systems ; Volume 25, Issue 2 , 2010 , Pages 853-865 ; 08858950 (ISSN) Karimi, H ; Davison, E. J ; Iravani, R ; Sharif University of Technology
    Abstract
    A linear time-invariant (LTI) robust servomechanism controller for islanded (autonomous) operation of a distributed generation (DG) unit and its local load is proposed. The DG unit utilizes a voltage-sourced converter (VSC) as the interface medium. The controller design is obtained by introducing a new optimal controller design procedure, in conjunction with a proposed non-conservative robustness constraint. The proposed controller utilizes 1) an internal oscillator for frequency control and 2) a robust servomechanism controller (RSC) to regulate the island voltage. Despite uncertainty of the load parameters, the proposed controller guarantees robust stability and pre-specified performance... 

    Low-order dynamic equivalent estimation of power systems using data of phasor measurement units

    , Article International Journal of Electrical Power and Energy Systems ; Volume 74 , 2016 , Pages 134-141 ; 01420615 (ISSN) Shiroei, M ; Mohammadi Ivatloo, B ; Parniani, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    This paper utilizes data measured by phasor measurement units (PMUs) to extract a low-order dynamic equivalent model for power system stability studies. The estimated model is a 2-order model for synchronous machines. This model has the advantage of simplicity of classical model and considerably reduces the oversimplifying error of classical model. This method offers an alternative approach to analytical model reduction techniques based on the detailed system models. The proposed method uses the synchronized bus voltage and current phasors measured by PMUs. Using post disturbance data, electrical and mechanical parameters of the equivalent generator are estimated sequentially. Furthermore, a... 

    Reliability evaluation of HV substations in the presence of Fault Current Limiter

    , Article 2009 IEEE Bucharest PowerTech: Innovative Ideas Toward the Electrical Grid of the Future, 28 June 2009 through 2 July 2009 ; 28 June-2 July , 2009 ; 9781424422357 (ISBN) Rahmati, I ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Abstract
    Short circuit current is one of the major threats for power system stability. Power system should have the ability to detect and clear these faults within a specified time. The protection system can clear the faults only if the interruption capability of the circuit breakers is higher than the fault level. Expansion of the grid and installation of new power on the scale that is envisaged will require practical solutions to a number of technical challenges. One of the technical challenges is fault level management as system expansion often results in increased fault levels beyond the design limits of the existing switchgears. Replacing the old equipments particularly circuit breakers with the... 

    Robust stability and stabilization of LTI fractional order systems with polytopic and interval uncertainties

    , Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 2253-2258 ; 9781509059638 (ISBN) Abooee, A ; Adelipour, S ; Haeri, M ; Sharif University of Technology
    Abstract
    This paper proposes a novel representation of uncertain LTI fractional order systems based on the state-space model which contains both interval and polytopic uncertainties. First, a set of linear matrix inequalities, which are sufficient conditions, are presented for analyzing the robust stability of the mentioned systems. Then, some sufficient conditions are obtained for designing a feedback gain matrix to tackle the robust stabilization of the considered systems. Note that the concluded conditions of this paper are valid for fractional systems with a given constant derivative order α in 1 ≤ α < 2 and also, can be employed conservatively for α in 0 < α < 1. Finally, through two numerical...