Loading...
Search for: targeted-drug-delivery
0.012 seconds
Total 103 records

    Dual-diffusivity stochastic model for macromolecule release from a hydrogel

    , Article ACS Applied Bio Materials ; Volume 3, Issue 7 , 2020 , Pages 4208-4219 Jahanmir, G ; Lau, C. M. L ; Abdekhodaie, M. J ; Chau, Y ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    A three-dimensional model has been developed to describe the multiphase release of macromolecular drugs encapsulated in a hydrogel. The heterogeneity of network mesh size was considered by assigning varying diffusion coefficients to the network lattices randomly. Using a stochastic approach, the random nature of diffusion of drug molecules was captured within the network. The simplest form of distribution containing two diffusion coefficients was tested. To generate the drug release profiles for experimental validation under the limitation of computational cost, a simple scaling relationship was employed. Unlike the single-diffusivity model, the dual-diffusivity model showed good agreement... 

    Dual-sensitive hydrogel nanoparticles based on conjugated thermoresponsive copolymers and protein filaments for triggerable drug delivery

    , Article ACS Applied Materials and Interfaces ; Volume 10, Issue 23 , 17 May , 2018 , Pages 19336-19346 ; 19448244 (ISSN) Ghaffari, R ; Eslahi, N ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    In this study, novel hydrogel nanoparticles with dual triggerable release properties based on fibrous structural proteins (keratin) and thermoresponsive copolymers (Pluronic) are introduced. Nanoparticles were used for curcumin delivery as effective and safe anticancer agents, the hydrophobicity of which has limited their clinical applications. A drug was loaded into hydrogel nanoparticles by a single-step nanoprecipitation method. The drug-loaded nanoparticles had an average diameter of 165 and 66 nm at 25 and 37 °C, respectively. It was shown that the drug loading efficiency could be enhanced through crosslinking of the disulfide bonds in keratin. Crosslinking provided a targeted release... 

    Effect of material and population on the delivery of nanoparticles to an atherosclerotic plaque: a patient-specific in silico study

    , Article Langmuir ; Volume 37, Issue 4 , 2021 , Pages 1551-1562 ; 07437463 (ISSN) Amani, A ; Shamloo, A ; Barzegar, S ; Forouzandehmehr, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Coronary artery disease (CAD) is the prevalent reason of mortality all around the world. Targeting CAD, specifically atherosclerosis, with controlled delivery of micro and nanoparticles, as drug carriers, is a very proficient approach. In this work, a patient-specific and realistic model of an atherosclerotic plaque in the left anterior descending (LAD) artery was created by image-processing of CT-scan images and implementing a finite-element mesh. Next, a fluid-solid interaction simulation considering the physiological boundary conditions was conducted. By considering the simulated force fields and particle-particle interactions, the correlation between injected particles at each cardiac... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) ; https://iopscience.iop.org/article/10.1088/2053-1591/ab6c98 Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Electrospray: novel fabrication method for biodegradable polymeric nanoparticles for further applications in drug delivery systems

    , Article NANOCON 2009 - 1st International Conference, Conference Proceedings ; 2009 , Pages 324-331 ; 9788087294130 (ISBN) Zarrabi, A ; Vossoughi, M ; Sharif University of Technology
    TANGER Ltd  2009
    Abstract
    Electrospray is an old processing technique that has recently been rediscovered. This technology is revolutionizing the biomaterials and nanotechnology fields by opening up new areas of research in fabricating drug delivery nano-devices. Due to their size, nanoparticles have the advantage of reaching less accessible sites in the body by escaping phagocytosis and entering tiny capillaries. Nanoparticles also have the unique property to accumulate at the site of inflammation and therefore, are very suitable for targeted drug delivery. The feasibility of fabricating relatively monodispersed polymeric nanoparticles by electrospray method in a modified electrospray setup is demonstrated in this... 

    Emerging phospholipid nanobiomaterials for biomedical applications to lab-on-a-chip, drug delivery, and cellular engineering

    , Article ACS Applied Bio Materials ; 2021 ; 25766422 (ISSN) Rahimnejad, M ; Rabiee, N ; Ahmadi, S ; Jahangiri, S ; Sajadi, S. M ; Akhavan, O ; Saeb, M. R ; Kwon, W ; Kim, M ; Hahn, S. K ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials... 

    Encapsulation of drug-loaded graphene oxide-based nanocarrier into electrospun pullulan nanofibers for potential local chemotherapy of breast cancer

    , Article Macromolecular Chemistry and Physics ; Volume 222, Issue 15 , 2021 ; 10221352 (ISSN) Asgari, S ; Pourjavadi, A ; Setayeshmehr, M ; Boisen, A ; Ajalloueian, F ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    With the high rate of mortality associated with breast cancer among women, breast cancer treatment has attracted great deal of attention globally. To reduce the exposure of body organs to high cytotoxicity of the common chemotherapeutic drugs, local co-delivery of selected chemotherapeutics has emerged as a solution. In this work, an electrospun composite including a co-drug-loaded graphene oxide-based nanocarrier is fabricated for local anticancer applications. To increase dispersion and cellular uptake of graphene oxide (GO), first, the hydroxyl groups at the edges of GO are grafted by poly (epichlorohydrin) (PCH) to form GO-PCH. Then, the hydroxyl end groups of PCH are grafted (g) with... 

    Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer

    , Article Materials Today Bio ; Volume 16 , 2022 ; 25900064 (ISSN) Mansoori Kermani, A ; Khalighi, S ; Akbarzadeh, I ; Niavol, F. R ; Motasadizadeh, H ; Mahdieh, A ; Jahed, V ; Abdinezhad, M ; Rahbariasr, N ; Hosseini, M ; Ahmadkhani, N ; Panahi, B ; Fatahi, Y ; Mozafari, M ; Kumar, A. P ; Mostafavi, E ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Targeted drug delivery systems using nanocarriers offer a versatile platform for breast cancer treatment; however, a robust, CD44-targeted niosomal formulation has not been developed and deeply studied (both in vitro and in vivo) yet. Here, an optimized system of epirubicin (Epi)-loaded niosomal nanoparticles (Nio) coated with hyaluronic acid (HA) has been engineered for targeting breast cancer cells. The nanoformulation was first optimized (based on size, polydispersity index, and entrapment efficiency); then, we characterized the morphology, stability, and release behavior of the nanoparticles. Epirubicin release from the HA-coated system (Epi-Nio-HA) showed a 21% (acidic buffer) and 20%... 

    Evaluation of anti-cancer and anti-metastatic effects of folate-PEGylated niosomes for co-delivery of letrozole and ascorbic acid on breast cancer cells

    , Article Molecular Systems Design and Engineering ; Volume 7, Issue 9 , 2022 , Pages 1102-1118 ; 20589689 (ISSN) Bourbour, M ; Khayam, N ; Noorbazargan, H ; Tavakkoli Yaraki, M ; Asghari Lalami, Z ; Akbarzadeh, I ; Eshrati Yeganeh, F ; Dolatabadi, A ; Mirzaei Rad, F ; Tan, Y. N ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Fighting with cancer requires the delivery of different therapeutics to the target cancerous cells by taking advantage of the synergistic effects of complementary medicine. Herein, we present a folate-PEGylated niosome as an efficient nanocarrier for targeted co-delivery of hydrophobic letrozole (L) and hydrophilic ascorbic acid (A) to breast cancer cells. The formulation of the niosomal nanocarrier was optimized by varying the ratio of cholesterol and surfactants to maximize the drug loading and minimize the size of nanocarriers. The optimum drug carriers were further functionalized with folate-PEG molecules to enhance the efficiency of drug delivery to the breast cancer cells and prevent... 

    Extraction and purification of phosphatidylcholine and its potential in nanoliposomal delivery of eucalyptus citriodora oil

    , Article Canadian Journal of Chemical Engineering ; 2021 ; 00084034 (ISSN) Bahari, M ; Vaziri, A. S ; Alemzadeh, I ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Phosphatidylcholine (PC) possesses amphiphilic characteristics to form vesicles or liposome nanoparticles and can be utilized to deliver essential nutrients such as proteins, peptide antigens, and essential fatty acids. In this study, an attempt has been made to obtain purified PC and evaluate its potential in nanoliposome synthesis and its corresponding drug release profile. In this regard, four physical separation techniques comprising extraction, precipitation, static, and dynamic adsorption were assessed and applied to purify PC from soybean lecithin. Different solvents and the ratio of lecithin to solvent were used to achieve the highest PC percentage. The results of an HPLC test showed... 

    Extraction and purification of phosphatidylcholine and its potential in nanoliposomal delivery of Eucalyptus citriodora oil

    , Article Canadian Journal of Chemical Engineering ; Volume 100, Issue 10 , 2022 , Pages 2807-2814 ; 00084034 (ISSN) Bahari, M ; Vaziri, A. S ; Alemzadeh, I ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Phosphatidylcholine (PC) possesses amphiphilic characteristics to form vesicles or liposome nanoparticles and can be utilized to deliver essential nutrients such as proteins, peptide antigens, and essential fatty acids. In this study, an attempt has been made to obtain purified PC and evaluate its potential in nanoliposome synthesis and its corresponding drug release profile. In this regard, four physical separation techniques comprising extraction, precipitation, static, and dynamic adsorption were assessed and applied to purify PC from soybean lecithin. Different solvents and the ratio of lecithin to solvent were used to achieve the highest PC percentage. The results of an HPLC test showed... 

    Fabrication and evaluation of controlled release of doxorubicin loaded UiO-66-NH2 metal organic frameworks

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 34, Issue 8 , 2021 , Pages 1874-1881 ; 1728144X (ISSN) Rakhshani, N ; Hassanzadeh Nemati, N ; Ramezani Saadatabadi, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2021
    Abstract
    The metal-organic frameworks (MOFs) due to their large specific surface area and high biocompatibility are suitable as carriers for drug delivery systems (DDSs). In the present study, doxorubicin (DOX) as an anticancer drug was loaded into UiO-66-NH2 MOFs to decrease the adverse side effects of pristine DOX use and to increase its efficiency through the controlled release of DOX from MOFs. The MOFs were synthesized via microwave heating method and characterized using X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett- Teller analysis. The drug loading efficiency, drug release profiles from synthesized MOFs and pharmacokinetic studies were investigated. The biocompatibility... 

    Fabrication of carboxymethyl chitosan/poly(ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer

    , Article Carbohydrate Polymers ; Volume 257 , 2021 ; 01448617 (ISSN) Abasalta, M ; Asefnejad, A ; Khorasani, M. T ; Saadatabadi, A. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The coaxial electrospinning for producing core-shell nanofibers due to control the release profile of drug by the shell layer has been developed. N-carboxymethyl chitosan (CMC)-polyvinyl alcohol (core)/poly(ε-caprolactone) (PCL) (shell) nanofibers were produced via coaxial electrospinning. Doxorubicin (DOX) and nickel ferrite nanoparticles were incorporated into the nanofibers for controlled release of DOX against MCF-7 breast cancer. The minimum CMC/PCL fiber diameter was found to be 300 nm by optimizing of three variables including voltage to distance ratio (1.5–2.5 kV/cm), CMC concentration (4−6 wt.%) and PCL concentration (8−12 wt.%). The synthesized core-shell fibers were characterized... 

    Fabrication of carboxymethyl chitosan/poly(ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer

    , Article Carbohydrate Polymers ; Volume 257 , 2021 ; 01448617 (ISSN) Abasalta, M ; Asefnejad, A ; Khorasani, M. T ; Saadatabadi, A. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The coaxial electrospinning for producing core-shell nanofibers due to control the release profile of drug by the shell layer has been developed. N-carboxymethyl chitosan (CMC)-polyvinyl alcohol (core)/poly(ε-caprolactone) (PCL) (shell) nanofibers were produced via coaxial electrospinning. Doxorubicin (DOX) and nickel ferrite nanoparticles were incorporated into the nanofibers for controlled release of DOX against MCF-7 breast cancer. The minimum CMC/PCL fiber diameter was found to be 300 nm by optimizing of three variables including voltage to distance ratio (1.5–2.5 kV/cm), CMC concentration (4−6 wt.%) and PCL concentration (8−12 wt.%). The synthesized core-shell fibers were characterized... 

    Facile and tunable method for polymeric surface modification of magnetic nanoparticles via RAFT polymerization: Preparation, characterization, and drug release properties

    , Article European Polymer Journal ; Volume 167 , 2022 ; 00143057 (ISSN) Kohestanian, M ; Pourjavadi, A ; Keshavarzi, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, the facile and tunable technique for the preparation of novel multi-stimuli-responsive nanocomposites via RAFT polymerization for DOX delivery is reported. The influence of the molecular weight of pH- and thermo-sensitive poly (acrylic acid-co-NIPAM) (PNAx), as a macro-RAFT agent, on the nanocomposites size and drug release rate was investigated. The outcome of this study reveals that macro-RAFT agent with lower molecular weight can be attached to the surface of magnetic nanoparticles with higher content of polymeric layer than can macro-RAFT agent with higher molecular weight. Also, it was observed that the particle size, polymer grafting density, DOX loading capacity, and DOX... 

    Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery

    , Article Journal of Materials Chemistry B ; Volume 8, Issue 32 , 2020 , Pages 7275-7287 Sabourian, P ; Ji, J ; Lotocki, V ; Moquin, A ; Hanna, R ; Frounchi, M ; Maysinger, D ; Kakkar, A ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Easily assembled and biocompatible chitosan/hyaluronic acid nanoparticles with multiple stimuli-responsive ability are ideally suited for efficient delivery of therapeutic agents under specific endogenous triggers. We report a simple and versatile strategy to formulate oxidative stress and pH-responsive chitosan/hyaluronic acid nanocarriers with high encapsulation efficiencies of small drug molecules and nerve growth factor protein. This is achieved through invoking the dual role of a thioketal-based weak organic acid to disperse and functionalize low molecular weight chitosan in one-pot. Thioketal embedded chitosan/hyaluronic acid nanostructures respond to oxidative stress and show... 

    Fluidic barriers in droplet-based centrifugal microfluidics: Generation of multiple emulsions and microspheres

    , Article Sensors and Actuators, B: Chemical ; Volume 311 , May , 2020 Madadelahi, M ; Madou, M. J ; Dorri Nokoorani, Y ; Shamloo, A ; Martinez Chapa, S. O ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Droplet generation is very important in biochemical processes such as cell encapsulation, digital PCR (Polymerase Chain Reaction), and drug delivery. In the present paper, a density-based method called “fluidic barrier” is introduced to produce multiple emulsions on a centrifugal microfluidic platform or Lab-on-a-CD (LOCD). We show that the density and the viscosity of the fluids involved are important parameters for predicting the characteristics of the droplets generated with this method. Moreover, we broadened this concept by using the fluidic barriers to separate reactive chemicals. As a proof of concept, alginate and CaCl2 solutions are separated by an oil barrier to control the... 

    Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer

    , Article ACS Applied Bio Materials ; Volume 5, Issue 3 , 2022 , Pages 1305-1318 ; 25766422 (ISSN) Ramezani Farani, M ; Azarian, M ; Heydari Sheikh Hossein, H ; Abdolvahabi, Z ; Mohammadi Abgarmi, Z ; Moradi, A ; Mousavi, S. M ; Ashrafizadeh, M ; Makvandi, P ; Saeb, M. R ; Rabiee, N ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Cancer is a deadly disease that has long plagued humans and has become more prevalent in recent years. The common treatment modalities for this disease have always faced many problems and complications, and this has led to the discovery of strategies for cancer diagnosis and treatment. The use of magnetic nanoparticles in the past two decades has had a significant impact on this. One of the objectives of the present study is to introduce the special properties of these nanoparticles and how they are structured to load and transport drugs to tumors. In this study, iron oxide (Fe3O4) nanoparticles with 6 nm sizes were coated with hyperbranched polyglycerol (HPG) and folic acid (FA). The... 

    Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation

    , Article Advanced Powder Technology ; Volume 31, Issue 9 , 2020 , Pages 4064-4071 Akbarzadeh, I ; Tavakkoli Yaraki, M ; Ahmadi, S ; Chiani, M ; Nourouzian, D ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, a folic acid-functionalized niosome was formulated and loaded with letrozole and curcumin as a promising drug carrier system for chemotherapy of the breast cancer cells. The formulation process was optimized by varying the type of Span 80 and total lipid to drug ratio, where Span 80 and lipid to drug molar ratio of 10 resulted in the niosomes with maximum encapsulation of both drugs but minimum size. The developed niosomal formulation showed a great storage stability up to one month with the small changes in drug encapsulation efficiency and size during the storage. In addition, they showed a pH-dependent release behaviour with slow drug release at physiological pH (7.4) while...