Loading...
Search for:
theoretical-modeling
0.006 seconds
Total 95 records
Modeling of a glucose sensitive composite membrane for closed-loop insulin delivery
, Article Journal of Membrane Science ; Volume 335, Issue 1-2 , 2009 , Pages 21-31 ; 03767388 (ISSN) ; Wu, X. Y ; Sharif University of Technology
2009
Abstract
A theoretical model was developed to describe a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose sensitive composite membrane. The composite membrane consisted of nanoparticles of a weakly acidic polymer, glucose oxidase and catalase embedded in a hydrophobic polymer. Time- and position-dependent diffusivity of involved species was considered in the model. Donnan equilibrium was used to find concentrations of buffer ions inside the membrane. The profiles of pH, species concentrations, volume fraction of swollen gel, polymer and water-filled space, as well as solute diffusivity inside the membrane were predicted by the model as a function...
A new stochastic oil spill risk assessment model for Persian Gulf: Development, application and evaluation
, Article Marine Pollution Bulletin ; Volume 145 , 2019 , Pages 357-369 ; 0025326X (ISSN) ; Raie, M ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
Persian Gulf is a semi-enclosed highly saline reverse estuary that is exposed to the risk of oil spills in offshore oil and gas activities. In the early 2000s, a specific version of NOAA's Trajectory Analysis Planner (TAP II) was developed for Persian Gulf to assist regional organizations in preparing oil spill contingency plans. In this research, a new stochastic model is developed to cover the limitations of TAP II. The new model is based on an advanced trajectory model, which is now linked with high resolution spatiotemporal data of the wind and sea current. In a case study, the developed model is compared with TAP II, and evaluated by multiple tests designed for analysis of uncertainty,...
Response planning for accidental oil spills in persian gulf: a decision support system (DSS) based on consequence modeling
, Article Marine Pollution Bulletin ; Volume 140 , 2019 , Pages 116-128 ; 0025326X (ISSN) ; Raie, M ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
Different causes lead to accidental oil spills from fixed and mobile sources in the marine environment. Therefore, it is essential to have a systematic plan for mitigating oil spill consequences. In this research, a general DSS is proposed for passive and active response planning in Persian Gulf, before and after a spill. The DSS is based on NOAA's advanced oil spill model (GNOME), which is now linked with credible met-ocean datasets of CMEMS and ECMWF. The developed open-source tool converts the results of the Lagrangian oil spill model to quantitative parameters such as mean concentration and time of impact of oil. Using them, two new parameters, emergency response priority number (ERPN)...
Experimentally based pore network modeling of NAPL dissolution process in heterogeneous porous media
, Article Journal of Contaminant Hydrology ; Volume 228 , November , 2020 ; Ramezanzadeh, M ; Ghazanfari, M. H ; Sharif University of Technology
Elsevier B.V
2020
Abstract
Practical designs of non-aqueous phase liquids (NAPLs) remediation strategies require reliable modeling of interphase mass transfer to predict the retraction of NAPL during processes such as dissolution. In this work, the dissolution process of NAPL during two-phase flow in heterogeneous porous media is studied using pore-network modeling and micromodel experiments. A new physical-experimental approach is proposed to enhance the prediction of the dissolution process during modeling of interphase mass transfer. In this regard, the normalized average resident solute concentration is evaluated for describing the dissolution process at pore-level. To incorporate the effect of medium...
An optimization based approach embedded in a fuzzy connectivity algorithm for airway tree segmentation
, Article Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - "Personalized Healthcare through Technology", 20 August 2008 through 25 August 2008, Vancouver, BC ; 2008 , Pages 4011-4014 ; 9781424418152 (ISBN) ; Ahmadian, A. R ; Fatemizadeh, E ; Alirezaie, J ; Sharif University of Technology
2008
Abstract
The main problem with airway segmentation methods which significantly influences their accuracy is leakage into the extra-luminal regions due to thinness of the airway wall during the process of segmentation. This phenomenon potentially makes large regions of lungparenchyma to be wrongly identified as airways. A solution to this problem in the previous methods was based on leak detection followed by reducing leakage during the segmentation process. This has been dealt with adjusting the segmentation parameters and performing the re-segmentation process on the pre-segmented area. This makes the algorithm very exhaustive and more dependent on the user interaction. The method presented here is...
A heuristic method for finding the optimal number of clusters with application In medical data
, Article 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08, Vancouver, BC, 20 August 2008 through 25 August 2008 ; 2008 , Pages 4684-4687 ; 9781424418152 (ISBN) ; Davoudi, H ; Fatemizadeh, E ; Sharif University of Technology
IEEE Computer Society
2008
Abstract
In this paper, a heuristic method for determining the optimal number of clusters is proposed. Four clustering algorithms, namely K-means, Growing Neural Gas, Simulated Annealing based technique, and Fuzzy C-means in conjunction with three well known cluster validity indices, namely Davies-Bouldin index, Calinski-Harabasz index, Maulik-Bandyopadhyay index, in addition to the proposed index are used. Our simulations evaluate capability of mentioned indices in some artificial and medical datasets. © 2008 IEEE
Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids
, Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
Elsevier Ltd
2021
Abstract
Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data....
Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids
, Article Energy ; Volume 227 , 2021 ; 03605442 (ISSN) ; Montazer, E ; Kazi, S. N ; Soudagar, M. E. M ; Ahmed, W ; Zubir, M. N. M ; Afzal, A ; Muhammad, M. R ; Ali, H. M ; Márquez, F. P. G ; Sarsam, W. S ; Sharif University of Technology
Elsevier Ltd
2021
Abstract
Covalently functionalized carbon nanoplatelets and non-covalent functionalized metal oxides nanoparticles (surfactant-treated) have been used to synthesize water-based nanofluids in this paper. To prove nanofluid stability, ultraviolet–visible (UV–vis) spectroscopy is used, and the results show that nanofluid is stable for sixty days for carbon and thirty days for metal oxides. The thermophysical properties are evaluated experimentally and validated with theoretical models. Thermal conductivities of f-GNPs, SiO2, and ZnO nanofluids are enhanced by 25.68%, 11.49%, and 15.42%, respectively. Lu-Li and Bruggeman's thermal conductivity models are correctly matched with the experimental data....
Modeling of a nonlinear Euler-Bernoulli flexible beam actuated by two active shape memory alloy actuators
, Article Journal of Intelligent Material Systems and Structures ; Volume 22, Issue 11 , 2011 , Pages 1249-1268 ; 1045389X (ISSN) ; Salehi, H ; Sayyaadi, H ; Sharif University of Technology
2011
Abstract
There are two different ways of using shape memory alloy (SMA) wire as an actuator for shape control of flexible structures: it can be either embedded within the composite laminate or externally attached to the structure. As the actuator can be placed at different offset distances from the beam, external actuators produce more bending moment and, consequently, considerabnle shape changes with the same magnitude of actuation force compared with the embedded type. Such a configuration also provides faster heat transfer rate owing to convection, which is very important in shape control applications that require a highfrequency response of SMA actuators. Although combination and physics-based...
Effect of intervertebral translational flexibilities on estimations of trunk muscle forces, kinematics, loads, and stability
, Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 18, Issue 16 , Sep , 2015 , Pages 1760-1767 ; 10255842 (ISSN) ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
Taylor and Francis Ltd
2015
Abstract
Due to the complexity of the human spinal motion segments, the intervertebral joints are often simulated in the musculoskeletal trunk models as pivots thus allowing no translational degrees of freedom (DOFs). This work aims to investigate, for the first time, the effect of such widely used assumption on trunk muscle forces, spinal loads, kinematics, and stability during a number of static activities. To address this, the shear deformable beam elements used in our nonlinear finite element (OFE) musculoskeletal model of the trunk were either substantially stiffened in translational directions (SFE model) or replaced by hinge joints interconnected through rotational springs (HFE model). Results...
Directed functional networks in Alzheimer's disease: disruption of global and local connectivity measures
, Article IEEE Journal of Biomedical and Health Informatics ; Volume 21, Issue 4 , 2017 , Pages 949-955 ; 21682194 (ISSN) ; Jalili, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2017
Abstract
Techniques available in graph theory can be applied to signals recorded from human brain. In network analysis of EEG signals, the individual nodes are EEG sensor locations and the edges correspond to functional relations between them that are extracted from EEG time series. In this paper, we study EEG-based directed functional networks in Alzheimer's disease (AD). To this end, directed connectivity matrices of 25 AD patients and 26 healthy subjects are processed and a number of meaningful graph theory metrics are studied. Our data show that functional networks of AD brains have significantly reduced global connectivity in alpha and beta bands (P < 0.05). The AD brains have significantly...
Theoretical modeling of actin-retrograde-flow passing clusters of confined T cell receptors
, Article Mathematical Biosciences ; Volume 283 , 2017 , Pages 1-6 ; 00255564 (ISSN) ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
Elsevier Inc
2017
Abstract
Through the activation process of T cells, actin filaments move from the cell periphery toward the cell center. The moving filaments engage with T cell receptors and thus contribute to transportation of the signaling molecules. To study the connection between the moving actin filaments and T cell receptors, an experiment available in the literature has measured filaments flow velocity passing over a region of confined clusters of receptors. It shows that flow velocity decreases in the proximity of the receptors, and then regains its normal value after traversing the region, suggesting a dissipative friction-like connection. In this work, we develop a minimal theoretical model to re-examine...
Seasonal trends in the composition and sources of PM2.5 and carbonaceous aerosol in Tehran, Iran
, Article Environmental Pollution ; Volume 239 , 2018 , Pages 69-81 ; 02697491 (ISSN) ; Zare Shahne, M ; Hosseini, V ; Roufigar Haghighat, N ; Lai, A. M ; Schauer, J. J ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
Currently PM2.5 is a major air pollution concern in Tehran, Iran due to frequent high levels and possible adverse impacts. In this study, which is the first of its kind to take place in Tehran, composition and sources of PM2.5 and carbonaceous aerosol were determined, and their seasonal trends were studied. In this regard, fine PM samples were collected every six days at a residential station for one year and the chemical constituents including organic marker species, metals, and ions were analyzed by chemical analysis. The source apportionment was performed using organic molecular marker-based CMB receptor modeling. Carbonaceous compounds were the major contributors to fine particulate mass...
Prediction of stratified charge divided chamber engine performance
, Article Scientia Iranica ; Volume 16, Issue 1 , 2009 , Pages 92-100 ; 10263098 (ISSN) ; Mozafari, A ; Sharif University of Technology
2009
Abstract
Certain stratified charge divided chamber engines have a very small pre-chamber, equipped with a spark plug and a main chamber connected to the pre-chamber through nozzles, A theoretical model is presented in this research to predict ignition delay and initiation of combustion in the pre-chamber. It considers flame progress in the pre-chamber up to the point where the flame penetrates the main chamber through the connecting nozzles. Step by step calculations then continue in the main chamber and the mass fraction burned and the energy release rate are calculated. The process continues to the point where all the fuel is burned. At each step, due to a one degree rotation of the crank shaft,...
A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport
, Article Food Chemistry ; Volume 293 , 2019 , Pages 57-65 ; 03088146 (ISSN) ; Akay, S ; Sharifi, F ; Sevimli Gur, C ; Ongen, G ; Yesil Celiktas, O ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
The bioavailability of drugs can be improved by regulating the structural properties, particularly lipoid systems, such as niosomes, can increase cellular uptake. Herein, we optimized double emulsion and niosomal formulations for encapsulating anthocyanin-rich black carrot extract. Nanoparticles obtained by selected formulation were characterized in terms of morphology, particle size, drug encapsulation efficiency, in vitro release and cytotoxicity. The optimum conditions for niosomal formulation were elicited as 30 mg of cholesterol, 150 mg of Tween 20 and feeding time of 1 min at a stirring rate of 900 rpm yielding the lowest average particle size of 130 nm. In vitro release data showed...