Loading...
Search for: time-dependents
0.015 seconds
Total 117 records

    Diffusion induced isothermal solidification during transient liquid phase bonding of cast IN718 superalloy

    , Article Canadian Metallurgical Quarterly ; Vol. 53, issue. 1 , 2014 , p. 38-46 Pouranvari, M ; Ekrami, A ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In transient liquid phase (TLP) bonding for commercial applications, one of the important key parameters is the holding time required for complete isothermal solidification tIS, which is a prerequisite for obtaining a proper bond microstructure. The objective of the study is to analyse the isothermal solidification kinetics during TLP bonding of cast IN718 nickel based superalloy. Experiments for TLP bonding were carried out using a Ni-7Cr-4.5Si-3Fe-3.2B (wt-%) amorphous interlayer at several bonding temperatures (1273-1373 K). The time required to obtain TLP joints free from centreline eutectic microconstituents was experimentally determined. Considering the solidification behaviour of... 

    Time and space extended-particle in cell model for electromagnetic particle algorithms

    , Article Physics of Plasmas ; Volume 19, Issue 3 , 2012 ; 1070664X (ISSN) Yazdanpanah, J ; Anvari, A ; Sharif University of Technology
    Abstract
    A general method for deriving electromagnetic particle in cell (EMPIC) algorithms has been given by Eastwood [Comput. Phys. Commun. 64, 252 (1991)]. This method devises variation of the action-integral to find discrete governing equations. The most important advantage of this method is automatic inclusion of the time coordinate via the action integral into the computational domain. This inclusion is inevitable because electromagnetic algorithms are based on time evolution of the system from its initial state. The drawback of this method is that it is rather abstract. This causes obscurity of particle-mesh interactions and makes it hard to analyze physical treatments of the computational... 

    Modeling of viscoelastic solid polymers using a boundary element formulation with considering a body load

    , Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 499-504 ; 10226680 (ISSN) ; 9783037853634 (ISBN) Ashrafi, H ; Bahadori, M. R ; Shariyat, M ; Sharif University of Technology
    Abstract
    In this work, a boundary element formulation for 2D linear viscoelastic solid polymers subjected to body force of gravity has been presented. Structural analysis of solid polymers is one of the most important subjects in advanced engineering structures. From basic assumptions of the viscoelastic constitutive equations and the weighted residual techniques, a simple but effective boundary element formulation is implemented for standard linear solid (SLS) model. The SLS model provides an approximate representation of observed behavior of a real advanced polymer in its viscoelastic range. This approach avoids the use of relaxation functions and mathematical transformations, and it is able to... 

    Green element solution of one-dimensional counter-current spontaneous imbibition in water wet porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 70, Issue 3-4 , 2010 , Pages 302-307 ; 09204105 (ISSN) Biniaz Delijani, E ; Pishvaie, M. R ; Sharif University of Technology
    Abstract
    A Green Element numerical formulation is used to solve the time-dependent nonlinear one-dimensional counter-current spontaneous imbibition diffusion equation in which water enters a water wet rock spontaneously while oil escapes by flowing in the opposite direction. The Green Element Method (GEM) is an element by element approach of the boundary element method. In this new method, by generating large sparse global matrices and yet taking advantage of properties of Green's function, solution of more complicated physical problem is achievable while at the same time much less computational effort is needed rather than boundary element method (BEM). By discretizing both the boundary and problem... 

    The pulsatile flow of Oldroyd-B fluid in a multi-stenosis artery with a time-dependent wall

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 4 , 2010 , Pages 915-923 ; 09544062 (ISSN) Javadzadegan, A ; Fakhimghanbarzadeh, B ; Sharif University of Technology
    Abstract
    In this study, the fundamental problem of unsteady blood flow in a tube with multi-stenosis is studied. An appropriate shape of the time-dependent multi-stenosis which is overlapping in the realm of formation of arterial narrowing is constructed mathematically. Blood is considered as a viscoelastic fluid characterized by the Oldroyd-B model. For the numerical solution of the problem, which is described by a coupled, non-linear system of partial differential equations (PDEs), with appropriate boundary conditions, the finite difference scheme is adopted. The solution is obtained by the development of an efficient numerical methodology based on the predictor-corrector method. The effects of... 

    Full operational range dynamic modeling of microcantilever beams

    , Article Journal of Microelectromechanical Systems ; Volume 22, Issue 5 , May , 2013 , Pages 1190-1198 ; 10577157 (ISSN) Abtahi, M ; Vossoughi, G ; Meghdari, A ; Sharif University of Technology
    Abstract
    Microcantilever beams are frequently utilized in microelectromechanical systems. The operational range of microcantilever beams under electrostatic force can be extended beyond pull-in in the presence of an intermediate dielectric layer, which has a significant effect on the behavior of the system. Three possible configurations of the beam over the operational voltage range are floating, pinned, and flat configurations. In this paper, a systematic method for deriving dynamic equation of microcantilevers for all configurations is presented. First, a static study is performed on deflection profile of the microcantilever under electrostatic force. After that, a polynomial approximate shape... 

    Risk based maintenance optimization of overhead distribution networks utilizing priority based dynamic programming

    , Article 2009 IEEE Power and Energy Society General Meeting, PES '09, 26 July 2009 through 30 July 2009, Calgary, AB ; 2009 ; 9781424442416 (ISBN) Abbasi, E ; Fotuhi Firuzabad, M ; Abiri Jahromi, A ; Sharif University of Technology
    Abstract
    This paper presents a priority based dynamic programming approach for long term maintenance scheduling of overhead distribution networks. The proposed approach is based on risk management approach and utilizes the model of decoupled risk factors. Two heuristic factors are defined and utilized in order to establish a maintenance priority list and to curtail the dynamic programming search space. The proposed methodology yields a significant computational saving compare to the previously reported dynamic programming. Risk management approach enables the asset managers to consider the actual condition of electrical equipments and expected consequence of their failures. Furthermore, the decoupled... 

    Synchronization of two coupled pacemaker cells based on the phase response curve

    , Article Biomedical Signal Processing and Control ; Volume 4, Issue 1 , 2009 , Pages 57-66 ; 17468094 (ISSN) Gholizade Narm, H ; Azemi, A ; Khademi, M ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    In this paper, the synchronization of a pair of pacemaker cells as Sino-Atrial (SA) and Atrio-Ventricullar (AV) nodes have been studied and a new approach for synchronization, based on the concept of Phase Response Curve (PRC), has been proposed. The paper starts with presenting the necessary and sufficient conditions for synchronization in terms of the PRC parameters. Such conditions are time dependent and thus, the paper proceeds with deriving some sufficient conditions, which are not time dependent. The time-delay between the firing time of SA node and when it reaches the AV node is also considered. When the conditions for spontaneous synchronization are not valid, the synchronization is... 

    Scheduling dynamic load-balancing in parallel and distributed computers using modified genetic algorithm with time dependent fitness function

    , Article Proceedings - 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS 2009, 20 November 2009 through 22 November 2009, Shanghai ; Volume 1 , 2009 , Pages 894-898 ; 9781424447541 (ISBN) Mohammadzadeh, J ; Moeinzadeh, M. H ; Sharifian, R. S ; Mahdavi, L ; Sharif University of Technology
    Abstract
    Load Balancing has many applications in various systems, but specifically plays a major role in the efficiency of parallel and distributed systems. In these systems, by load balancing we mean scheduling the jobs in a way that every job could be executed concurrently while it is mapped to a processing unit, such as a processor (in a multi-processor system) or a computer (in a grid computer). By developing effective methods the whole program time execution will be decreased and process utilization will be optimized. In this paper, a solution is proposed for dynamic load balancing. Because of the NP-hard nature of the problem, heuristic methods are desired. A simple scheduling method, Round... 

    Numerical solution of non-fourier heat transfer during laser irradiation on tooth layers

    , Article Journal of Mechanical Science and Technology ; Volume 31, Issue 12 , 2017 , Pages 6085-6092 ; 1738494X (ISSN) Falahatkar, S ; Nouri Borujerdi, A ; Najafi, M ; Mohammadzadeh, A ; Sharif University of Technology
    Abstract
    This study reports on the simulation of temperature distribution of human tooth under a laser beam based on non-Fourier models. The temperature in the tooth depth that directly results from the conduction heat transfer process is caused by the lengthy thermal relaxation time in the tooth layers. A detailed tooth composed of enamel, dentin, and pulp with unstructured shape, uneven boundaries, and realistic thicknesses was considered. A finite difference scheme was separately adopted to solve time-dependent equations in solid layers and soft tissue of the tooth. In this study, a dual-phase-lag non-Fourier heat conduction model was applied to evaluate temperature distribution induced by laser... 

    Multielectron dissociative ionization of methane and formaldehyde molecules with optimally tailored intense femtosecond laser pulses

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 185 , 2017 , Pages 298-303 ; 13861425 (ISSN) Irani, E ; Anvari, A ; Sadighi Bonabi, R ; Monfared, M ; Sharif University of Technology
    Abstract
    The multielectron dissociative ionization of CH4 and CH2O molecules has been investigated using optimum convolution of different dual tailored short laser pulses. Based on three dimensional molecular dynamics simulations and TDDFT approach, the dissociation probability is enhanced by designing the dual chirped-chirped laser pulses and chirped-ordinary laser pulses for formaldehyde molecule. However, it is interesting to notice that the sensitivity of enhanced dissociation probability into different tailored laser pulses is not significant for methane molecule. In this presented modifications, time variation of bond length, velocity, time dependent electron localization function and evolution... 

    A sequential implicit discrete fracture model for three-dimensional coupled flow-geomechanics problems in naturally fractured porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 150 , 2017 , Pages 312-322 ; 09204105 (ISSN) Moradi, M ; Shamloo, A ; Dezfuli, A. D ; Sharif University of Technology
    Abstract
    A sequential implicit numerical method based on discrete-fracture model and the Galerkin Finite Element method, for time-dependent coupled fluid flow and geomechanics problems in fractured subsurface formations is presented. Discrete-fracture model has been used to explicitly represent the fracture network inside porous media. The Galerkin Finite Element method with adaptive unstructured gridding is implemented to numerically solve the spatially three-dimensional and time-dependent problem. The presented method is validated with previously obtained solutions. Two problems are numerically solved by applying the presented methodology in a three-dimensional fractured petroleum reservoir under... 

    Experimental and modeling investigation of dynamic interfacial tension of asphaltenic-acidic crude oil/aqueous phase containing different ions

    , Article Chinese Journal of Chemical Engineering ; 2017 ; 10049541 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    In this way, after experimental measurement of interfacial tension, different models including mono-exponential decay, dynamic adsorption models and empirical equation are used to correlate this time-dependent behavior of interfacial tension (IFT). During the modeling approach, the induction, adsorption, equilibrium, and meso-equilibrium times as well as diffusivity of surface active components known as natural surfactant including asphaltene and resin from crude oil to the interface are obtained. In addition, the surface excess concentration of surface active components at the interface and Gibbs adsorption isotherm are utilized to analyze the measured dynamic IFTs. Finally, the mechanisms... 

    Microgravity modulation effects on free convection problems LBM simulation

    , Article Physics of Fluids ; Volume 30, Issue 1 , 2018 ; 10706631 (ISSN) Javadi, K ; Kazemi, K ; Sharif University of Technology
    Abstract
    In this paper, microgravity modulation effects on free convection in a cavity are investigated using the lattice Boltzmann method. In order to create microgravity modulation, a sinusoidal time-dependent function is considered. Parameters of the flow are chosen such that the maximum Rayleigh number approaches 106. The natural frequency of the system is obtained at first. Afterwards, effects of different frequencies on the flow and heat transfer fields are investigated in detail. Results are presented in four different frequency ratios categorized as (1) ω∗=1200, 1100, 120, and 110; (2) ω∗=18, 15, 13, and 12; (3) ω∗ = 0.75, 0.85, and 0.95; and (4) the last one is considered for natural... 

    Modeling the detection efficiency in photodetectors with temperature-dependent mobility and carrier lifetime

    , Article Superlattices and Microstructures ; Volume 122 , 2018 , Pages 557-562 ; 07496036 (ISSN) Moeini, I ; Ahmadpour, M ; Mosavi, A ; Alharbi, N ; Gorji, N. E ; Sharif University of Technology
    Abstract
    We proposed a modeling procedure to calculate the impact of temperature on the detection efficiency in photodetectors based on CdTe materials. Temperature increase impacts on the electrical properties of the materials such as carrier mobility and carrier recombination lifetime. This impact which can be effective in some cases has been normally ignored in the modeling approaches presented in the literature. Here we show that increasing the temperature from 190 K to 300 K not reduces the mobility of both electrons and holes but also significantly reduces the carrier lifetime. The result will impact on electric-field within the depletion width of the device, drift and diffusion lengths which... 

    Nonlinear dynamics and stability analysis of a parametrically excited CNT-reinforced MRE viscoelastic cantilever beam

    , Article Smart Materials and Structures ; Volume 27, Issue 10 , 2018 ; 09641726 (ISSN) Mirhashemi, S. S ; Jalali, A ; Sharif University of Technology
    Abstract
    This paper investigates the dynamic response of a clamped-free CNT-reinforced-MRE beam which is actuated by the combination of a constant and a harmonic time-dependent magnetic field. Using Hamilton's principle, the equation of motion has been obtained and discretized using the Galerkin method. This procedure transforms the governing PDE equation of motion into a nonlinear ODE equation in the form of the nonlinear Mathieu equation with cubic damping. Then, the method of multiple scales is employed to obtain the dynamic response of the system. Furthermore, a stability analysis is also performed and the effects of a magnetic field on the dynamic response and stability of the system is... 

    Experimental investigation of the leading edge vortex formation on unsteady boundary layer

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 232, Issue 18 , 2018 , Pages 3263-3280 ; 09544062 (ISSN) Davari, A. R ; Abdollahi, R ; Azimizadeh, E ; Sharif University of Technology
    Abstract
    Extensive experimental studies have been performed to investigate the unsteady boundary layer behavior over a plunging wind turbine blade section. The studies have been undertaken at various combinations of reduced frequencies, Reynolds numbers, and locations. A boundary layer rake has been carefully manufactured and utilized for velocity measurements inside the unsteady boundary layer. The measurement has been conducted in pre-static stall conditions. The reduced frequency and free stream velocity have varied from 0.005 to 0.1, and 30 to 60 m/s, respectively. To cover all possible scenarios, the streamwise positions of measurements have been chosen to be in favorable (x/c = 0.37), almost...