Loading...
Search for: time-dependents
0.011 seconds
Total 117 records

    Mimicking the Hadamard discrete-time quantum walk with a time-independent Hamiltonian

    , Article Quantum Information Processing ; Volume 18, Issue 5 , 2019 ; 15700755 (ISSN) Khatibi Moqadam, J ; de Oliveira, M. C ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    The discrete-time quantum walk dynamics can be generated by a time-dependent Hamiltonian, repeatedly switching between the coin and the shift generators. We change the model and consider the case where the Hamiltonian is time-independent, including both the coin and the shift terms in all times. The eigenvalues and the related Bloch vectors for the time-independent Hamiltonian are then compared with the corresponding quantities for the effective Hamiltonian generating the quantum walk dynamics. Restricted to the non-localized initial quantum walk states, we optimize the parameters in the time-independent Hamiltonian such that it generates a dynamics similar to the Hadamard quantum walk. We... 

    Micromechanical modeling of rate-dependent behavior of Connective tissues

    , Article Journal of Theoretical Biology ; Volume 416 , 2017 , Pages 119-128 ; 00225193 (ISSN) Fallah, A ; Ahmadian, M. T ; Firozbakhsh, K ; Aghdam, M. M ; Sharif University of Technology
    Academic Press  2017
    Abstract
    In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of... 

    Microgravity modulation effects on free convection problems LBM simulation

    , Article Physics of Fluids ; Volume 30, Issue 1 , 2018 ; 10706631 (ISSN) Javadi, K ; Kazemi, K ; Sharif University of Technology
    Abstract
    In this paper, microgravity modulation effects on free convection in a cavity are investigated using the lattice Boltzmann method. In order to create microgravity modulation, a sinusoidal time-dependent function is considered. Parameters of the flow are chosen such that the maximum Rayleigh number approaches 106. The natural frequency of the system is obtained at first. Afterwards, effects of different frequencies on the flow and heat transfer fields are investigated in detail. Results are presented in four different frequency ratios categorized as (1) ω∗=1200, 1100, 120, and 110; (2) ω∗=18, 15, 13, and 12; (3) ω∗ = 0.75, 0.85, and 0.95; and (4) the last one is considered for natural... 

    Investigation of intense femto-second laser ionization and dissociation of methane with time-dependent density-functional approach

    , Article Chemical Physics Letters ; Vol. 604 , 2014 , Pages 60-67 ; ISSN: 00092614 Irani, E ; Sadighi Bonabi, R ; Anvari, A ; Sharif University of Technology
    Abstract
    Three dimensional calculations of electronic dynamics of CH4 in a strong laser field are presented with time-dependent density-functional theory. Time evolution of dipole moment and electron localization function is presented. The dependence of dissociation rate on the laser characters is shown and optimal effective parameters are evaluated. The optimum field leads to 76% dissociation probability for Gaussian envelope and 40 fs (FWHM) at 10 16 W cm-2. The dissociation probability is calculated by optimum convolution of dual short pulses. By combining of field assisted dissociation process and Ehrenfest molecular dynamics, time variation of bond length, velocity and orientation effect are... 

    Introducing an effective method for extending the high harmonic spectrum plateau from gas targets

    , Article Journal of Physics B: Atomic, Molecular and Optical Physics ; Volume 54, Issue 4 , February , 2021 ; 09534075 (ISSN) Khodabandeh, Z ; Monfared, M ; Majles Ara, M. H ; Sadighi Bonabi, R ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    An effective semi-classical method is introduced for controlling the high-order harmonic generation process and extending the cutoff frequency. This method is capable of defining the proper specification of the driving laser for maximizing the cutoff frequency. This method is evaluated by examining the high harmonic spectrum from the hydrogen atom and the fluorine (F2) molecule irradiated by single-, two-, and three-color laser fields. This study is done using the time-dependent density functional theory in a three-dimensional space. The results show that the single-, two-, and three-color laser pulses tuned by proper specifications could extend the cutoff frequency by up to 85%, 176%, and... 

    Interpretation of tensile softening in concrete, using fractal geometry

    , Article Scientia Iranica ; Volume 15, Issue 1 , 2008 , Pages 8-15 ; 10263098 (ISSN) Khezrzadeh, H ; Mofid, M ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    Concrete is a heterogeneous material with a wide variety of usage in structural design. Concrete under tension exhibits strain softening, i.e., a negative slope in the stress-deformation diagrams. Different softening curves have been proposed in the literature to interpret this phenomenon. In current research, a new softening curve for concrete has been proposed by using the newly introduced concept of fractal geometry. This new softening curve is denominated a 'Quasi-fractal' softening curve and consists of two parts, a linear portion at the beginning and an exponential portion in the rest of the curve. A comparison of a "Quasi-fractal" softening curve with a set of proposed experimental... 

    Interaction of quantum dot molecules with multi-mode radiation fields

    , Article Scientia Iranica ; Volume 17, Issue 1 D , 2010 , Pages 59-70 ; 10263098 (ISSN) Sadeghi, A. H ; Naqavi, A ; Khorasani, S ; Sharif University of Technology
    2010
    Abstract
    In this article, the interaction of an arbitrary number of quantum dots behaving as artificial molecules with different energy levels and a multi-mode electromagnetic field is studied. We make the assumption that each quantum dot can be represented as an atom with zero kinetic energy, and that all excitonic effects except dipole-dipole interactions may be. disregarded. We use the. Jaynes-Cummings-Paul model with applications to quantum systems based on a time-dependent Hamiltonian and entangled states. We obtain a system of equations describing the interaction, and present a method to solve the equations analytically for a single mode fi,eld within the Rotating-Wave Approximation. As an... 

    Improvement of polymer flooding using in-situ releasing of smart nano-scale coated polymer particles in porous media

    , Article Energy Exploration and Exploitation ; Volume 30, Issue 6 , 2012 , Pages 915-940 ; 01445987 (ISSN) Ashrafizadeh, M ; Ramazani, S. A. A ; Sadeghnejad, S ; Sharif University of Technology
    2012
    Abstract
    The main purpose of this paper is modeling and simulation of in-situ releasing of smart nano-sized core-shell particles at the water-oil interface during polymer flooding. During the polymer flooding process, when these nano-particles reach the water-oil interface, migrate to the oil phase and the hydrophobic layer of them dissolves in this phase. After dissolution of this protective nano-sized layer, the hydrophilic core containing a water-soluble ultra high molecular weight polymer diffuses back into the water phase and with dissolving in this phase, dramatically increases viscosity of flooding water in the neighborhood of the water-oil interface. In this study, two different... 

    Implementation of a dynamic Monte Carlo method for transients analysis with thermal-hydraulic feedbacks using MCNPX code

    , Article Annals of Nuclear Energy ; Volume 130 , 2019 , Pages 240-249 ; 03064549 (ISSN) Ghaderi Mazaher, M ; Salehi, A. A ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Transient analysis which is vital in safety analysis requires a reliable calculation method. Most valid tools use diffusion theory with many approximations by now. However, the Monte Carlo method inherently overcomes these approximations and accurately calculates the parameters of a reactor. In this paper, a new time-dependent transport approach is described to simulate the nuclear reactor dynamic correctly using the MCNPX code. In this approach the fundamental parameters of a nuclear reactor like multiplication factor (K eff ) and mean generation time (t G ) are calculated using MCNPX code. They are then employed in the formulas to compute neutron population, proportional to K eff , during... 

    Homogenization of a locally periodic time-dependent domain

    , Article Communications on Pure and Applied Analysis ; Volume 19, Issue 3 , 2020 , Pages 1669-1695 Fotouhi, M ; Yousefnezhad, M ; Sharif University of Technology
    American Institute of Mathematical Sciences  2020
    Abstract
    We consider the homogenization of a Robin boundary value problem in a locally periodic perforated domain which is also time-dependent. We aim at justifying the homogenization limit, that we derive through asymptotic expansion technique. More exactly, we obtain the so-called corrector homogenization estimate that specifies the convergence rate. The major challenge is that the media is not cylindrical and changes over time. We also show the existence and uniqueness of solutions of the microscopic problem. © 2020 American Institute of Mathematical Sciences. All rights reserved  

    Green element solution of one-dimensional counter-current spontaneous imbibition in water wet porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 70, Issue 3-4 , 2010 , Pages 302-307 ; 09204105 (ISSN) Biniaz Delijani, E ; Pishvaie, M. R ; Sharif University of Technology
    Abstract
    A Green Element numerical formulation is used to solve the time-dependent nonlinear one-dimensional counter-current spontaneous imbibition diffusion equation in which water enters a water wet rock spontaneously while oil escapes by flowing in the opposite direction. The Green Element Method (GEM) is an element by element approach of the boundary element method. In this new method, by generating large sparse global matrices and yet taking advantage of properties of Green's function, solution of more complicated physical problem is achievable while at the same time much less computational effort is needed rather than boundary element method (BEM). By discretizing both the boundary and problem... 

    Gravity-driven thin liquid films over topographical substrates

    , Article European Physical Journal E ; Volume 36, Issue 6 , 2013 ; 12928941 (ISSN) Mazloomi, A ; Moosavi, A ; Esmaili, E ; Sharif University of Technology
    2013
    Abstract
    We investigate the time-dependent evolution of thin liquid films over inclined substrates using a multi-component lattice Boltzmann algorithm. Substrates with and without grooves are considered and the effects of the inclination angle on the dynamics and the coating of the substrates are studied. Our results indicate that the dynamics is enhanced and the ridge height and its displacement are increased by increasing the inclination angle. However, by increasing the inclination angle the maximum depth that can be successfully coated is reduced. Also, although for any given groove depth the width should be larger than a critical value for successful coating, the critical width decreases for... 

    Genotoxicity of graphene nanoribbons in human mesenchymal stem cells

    , Article Carbon ; Volume 54 , 2013 , Pages 419-431 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Emamy, H ; Akhavan, F ; Sharif University of Technology
    2013
    Abstract
    Single-layer reduced graphene oxide nanoribbons (rGONRs) were obtained through an oxidative unzipping of multi-walled carbon nanotubes and a subsequent deoxygenation by hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs) were isolated from umbilical cord blood and used for checking the concentration- and time-dependent cyto- and geno-toxic effects of the rGONRs and reduced graphene oxide sheets (rGOSs). The cell viability assay indicated significant cytotoxic effects of 10 μg/mL rGONRs after 1 h exposure time, while the rGOSs exhibited the same cytotoxicity at concentration of 100 μg/mL after 96 h. The oxidative stress was found as the main mechanism involved in the... 

    Full operational range dynamic modeling of microcantilever beams

    , Article Journal of Microelectromechanical Systems ; Volume 22, Issue 5 , May , 2013 , Pages 1190-1198 ; 10577157 (ISSN) Abtahi, M ; Vossoughi, G ; Meghdari, A ; Sharif University of Technology
    Abstract
    Microcantilever beams are frequently utilized in microelectromechanical systems. The operational range of microcantilever beams under electrostatic force can be extended beyond pull-in in the presence of an intermediate dielectric layer, which has a significant effect on the behavior of the system. Three possible configurations of the beam over the operational voltage range are floating, pinned, and flat configurations. In this paper, a systematic method for deriving dynamic equation of microcantilevers for all configurations is presented. First, a static study is performed on deflection profile of the microcantilever under electrostatic force. After that, a polynomial approximate shape... 

    First heterobimetallic AgI–CoIII coordination compound with both bridging and terminal –NO2 coordination modes: Synthesis, characterization, structural and computational studies of (PPh3)2AgI– (μ-κ2O,O′:κN-NO2)–COIII(DMGH)2(κN-NO2)

    , Article Acta Crystallographica Section C: Structural Chemistry ; Volume 74, Issue 8 , 2018 , Pages 882-888 ; 20532296 (ISSN) Kia, R ; Batmanghelich, S ; Raithby, P. R ; Sharif University of Technology
    Wiley-Blackwell  2018
    Abstract
    An unusual heterobimetallic bis(triphenylphosphane)(NO2)AgI–CoIII(dimethyl-glyoximate)(NO2) coordination compound with both bridging and terminal –NO2 (nitro) coordination modes has been isolated and characterized from the reaction of [CoCl(DMGH)2(PPh3)] (DMGH2 is dimethylglyoxime or N,N′-di-hydroxybutane-2,3-diimine) with excess AgNO2. In the title compound, namely bis(dimethylglyoximato-1κ2O,O′)(μ-nitro-1κN:2κ2O,O′)(nitro-1κN)bis(triphenyl-phosphane-2κP)cobalt(III)silver(I), [AgCo(C4H7N2O2)2(NO2)2(C18H15P)2], one of the ambidentate –NO2 ligands, in a bridging mode, chelates the AgI atom in an isobidentate κ2O,O′-manner and its N atom is coordinated to the CoIII atom. The other –NO2 ligand... 

    Finite strain numerical analysis of elastomeric bushings under multi-axial loadings: A compressible visco-hyperelastic approach

    , Article International Journal of Mechanics and Materials in Design ; Volume 9, Issue 4 , December , 2013 , Pages 385-399 ; 15691713 (ISSN) Khajehsaeid, H ; Baghani, M ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    Elastomers have wide and ever increasing applications in several industries. In this work a compressible visco-hyperelastic approach is employed to investigate the behavior of elastomeric materials. The time-discrete form of the material model is developed to be used in numerical simulations. This formulation provides a recursive relation to update the stress in any time step regarding the deformation history. By means of analytical solutions derived for pure torsion of a solid circular cylinder, the numerical implementation is validated and then, the response of an elastomeric bushing is investigated in torsional, axial and combined deformations. These bushings are used in suspension... 

    Experimental study of dynamic imbibition during water flooding of naturally fractured reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 174 , 2019 , Pages 1-13 ; 09204105 (ISSN) Harimi, B ; Masihi, M ; Mirzaei Paiaman, A ; Hamidpour, E ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Capillary imbibition is an important recovery mechanism in naturally fractured reservoirs when water-filled fractures surround water-wet matrix blocks. A large amount of studies of imbibition process is simply total or partial immersion of nonwetting phase saturated rock in aqueous wetting phase. However, water advance in fractures during water flooding or water encroachment from an active aquifer introduces time dependent boundary conditions where invariant exposure of rock surface to water is not representative. In this work, a laboratory simulated matrix-fracture system was used to investigate different aspects of imbibition in the presence of fracture fluid flow (namely dynamic... 

    Experimental investigation of the leading edge vortex formation on unsteady boundary layer

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 232, Issue 18 , 2018 , Pages 3263-3280 ; 09544062 (ISSN) Davari, A. R ; Abdollahi, R ; Azimizadeh, E ; Sharif University of Technology
    Abstract
    Extensive experimental studies have been performed to investigate the unsteady boundary layer behavior over a plunging wind turbine blade section. The studies have been undertaken at various combinations of reduced frequencies, Reynolds numbers, and locations. A boundary layer rake has been carefully manufactured and utilized for velocity measurements inside the unsteady boundary layer. The measurement has been conducted in pre-static stall conditions. The reduced frequency and free stream velocity have varied from 0.005 to 0.1, and 30 to 60 m/s, respectively. To cover all possible scenarios, the streamwise positions of measurements have been chosen to be in favorable (x/c = 0.37), almost... 

    Experimental and modeling investigation of dynamic interfacial tension of asphaltenic-acidic crude oil/aqueous phase containing different ions

    , Article Chinese Journal of Chemical Engineering ; 2017 ; 10049541 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    In this way, after experimental measurement of interfacial tension, different models including mono-exponential decay, dynamic adsorption models and empirical equation are used to correlate this time-dependent behavior of interfacial tension (IFT). During the modeling approach, the induction, adsorption, equilibrium, and meso-equilibrium times as well as diffusivity of surface active components known as natural surfactant including asphaltene and resin from crude oil to the interface are obtained. In addition, the surface excess concentration of surface active components at the interface and Gibbs adsorption isotherm are utilized to analyze the measured dynamic IFTs. Finally, the mechanisms... 

    Estimating time-dependent origin-destination demand from traffic counts: Extended gradient method

    , Article Transportation Letters ; Volume 7, Issue 4 , 2015 , Pages 210-218 ; 19427867 (ISSN) Shafiei, M ; Nazemi, M ; Seyedabrishami, S ; Sharif University of Technology
    Maney Publishing  2015
    Abstract
    Time-dependent origin-destination (TDOD) demand is a key input of dynamic traffic assignment (DTA) in advanced traffic management systems. Model reliability is highly dependent on the accuracy of this information. One method to achieve TDOD demand matrices is to use a primary demand matrix and traffic volume counts in some links of a network. This paper proposes a bi-level model to correct the TDOD demand matrix. The extended gradient method (EGM) - an iterative method that minimizes the discrepancy between the counted and estimated traffic volumes - is a suggested means to solve this problem. The methodology is first tested on a small synthetic network to verify its performance. Then, it is...