Loading...
Search for: tissue-engineering
0.014 seconds

    Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by the freeze-gelation method

    , Article Materials Research Express ; Volume 6, Issue 11 , 2019 ; 20531591 (ISSN) Shamloo, A ; Kamali, A ; Bahrani Fard, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Three-dimensional porous scaffolds are essential in tissue engineering applications. One of the most conventional methods to form porosity in scaffolds is freeze-drying, which is not energy efficient and cost effective. Therefore in this work, it was experimentally investigated whether gelatin, with its unique mechanical properties and cell binding applications, could be used as a comprising polymer of scaffolds with porous structure made by the freeze-gelation method. Chitosan, gelatin and chitosan/gelatin scaffolds were fabricated by the freeze-gelation method and their behaviors, determined by analysis of scanning electron microscopy images, Fourier transform infrared spectroscopy,... 

    Magnetoelectric nanocomposite scaffold for high yield differentiation of mesenchymal stem cells to neural-like cells

    , Article Journal of Cellular Physiology ; Volume 234, Issue 8 , 2019 , Pages 13617-13628 ; 00219541 (ISSN) Esmaeili, E ; Soleimani, M ; Ghiass, M. A ; Hatamie, S ; Vakilian, S ; Zomorrod, M. S ; Sadeghzadeh, N ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    While the differentiation factors have been widely used to differentiate mesenchymal stem cells (MSCs) into various cell types, they can cause harm at the same time. Therefore, it is beneficial to propose methods to differentiate MSCs without factors. Herein, magnetoelectric (ME) nanofibers were synthesized as the scaffold for the growth of MSCs and their differentiation into neural cells without factors. This nanocomposite takes the advantage of the synergies of the magnetostrictive filler, CoFe 2 O 4 nanoparticles (CFO), and piezoelectric polymer, polyvinylidene difluoride (PVDF). Graphene oxide nanosheets were decorated with CFO nanoparticles for a proper dispersion in the polymer through... 

    Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement

    , Article Journal of Materials Science ; Volume 54, Issue 5 , 2019 , Pages 4259-4276 ; 00222461 (ISSN) Salari, M ; Mohseni Taromsari, S ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Medical engineering advances in total joint replacements and societies’ rising demand for long-lasting materials have proven it essential to manufacture materials that are more similar to the original tissue in the fields of mechanical, tribological, and biological properties. Ultra-high molecular weight polyethylene (UHMWPE) is a polymer widely used in arthroplasty applications due to its biocompatibility, chemical stability, and reasonable mechanical properties; however, it still fails to entirely meet the standards of the hip joint implant. In this study, different concentrations of nanosized zirconia were added to UHMWPE and HAp matrix with an intended application in arthroplasty.... 

    Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study

    , Article Materials Science and Engineering C ; Volume 113 , 2020 Afjoul, H ; Shamloo, A ; Kamali, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, fabrication of a three-dimensional porous scaffold was performed using freeze gelation method. Recently, fabrication of scaffolds using polymer blends has become common for many tissue engineering applications due to their unique tunable properties. In this work, we fabricated alginate-gelatin porous hydrogels for wound healing application using a new method based on some modifications to the freeze-gelation method. Alginate and gelatin were mixed in three different ratios and the resulting solutions underwent freeze gelation to obtain 3D porous matrices. We analyzed the samples using different characterization tests. The scanning electron microscopy (SEM) results indicated... 

    Ferrofluid droplet manipulation using an adjustable alternating magnetic field

    , Article Sensors and Actuators, A: Physical ; Volume 301 , 2020 Bijarchi, M. A ; Favakeh, A ; Sedighi, E ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Magnetically actuated droplet manipulation offers a promising tool for biomedical and engineering applications, such as drug delivery, biochemistry, sample handling in lab-on-chip devices and tissue engineering. In this study, characteristics of an adjustable alternating magnetic field generated by a magnetic coil for droplet manipulation was investigated which enables more control on droplet transport, and it can be considered as a suitable alternative for moving magnets or an array of micro-coils. By adjusting the magnetic flux density, the duty cycle and applied magnetic frequency, the manipulation of water-based ferrofluid droplets with a bio-compatible surfactant for different volumes... 

    Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications

    , Article Polymer Reviews ; Volume 60, Issue 1 , 2020 , Pages 144-170 Eslahi, N ; Mahmoodi, A ; Mahmoudi, N ; Zandi, N ; Simchi, A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Bacterial cellulose (BC) is an extracellular natural polymer produced by many microorganisms and its properties could be tailored via specific fabrication methods and culture conditions. There is a growing interest in BC derived materials due to the main features of BC such as porous fibrous structure, high crystallinity, impressive physico-mechanical properties, and high water content. However, pristine BC lacks some features, limiting its practical use in varied applications. Thus, fabrication of BC composites has been attempted to overcome these constraints. This review article overviews most recent advance in the development of BC composites and their potential in biomedicine including... 

    A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application

    , Article Carbohydrate Polymers ; Volume 245 , 2020 Hajiabbas, M ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the article, a bilayer nanocomposite scaffold made of oxidized alginate (OAL), gelatin (G), and silk fibroin (SF) has been prepared via combining electrospinning, in situ gas foaming, in situ crosslinking and freeze drying methods. The physicochemical and mechanical properties, as well as thermal stability of the proposed composite, have been investigated by SEM, FTIR, XRD, tensile, and TGA analysis. The data indicate that structure and degree of crosslinking play a vital role in adjusting the physical and mechanical properties of composite scaffolds. Further, the authors find a favorable adipose-derived mesenchymal stem cell's (AMSC) attachment and distribution within this novel... 

    In-situ crosslinking of electrospun gelatin-carbodiimide nanofibers: fabrication, characterization, and modeling of solution parameters

    , Article Chemical Engineering Communications ; 2020 Hajiabbas, M ; Alemzadeh, I ; Vossoughi, M ; Shamloo, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This work has focused on in-situ crosslinking of gelatin (G) to produce electrospun scaffold with improved fiber morphology retention and mechanical properties. As per this approach, we prepared G nanofibers through mixing G, 1-ethyl-3-(3 dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in the new solvent system. Response surface methodology (RSM) was employed to study the influence of solution parameters on fiber diameter. The morphological structure was examined, and the appropriate level of setting to obtain smooth fibers with a favorable diameter was reported. Results revealed using EDC/NHS for in-situ crosslinking improves the mechanical properties... 

    Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4205-4224 Mohammadi Nasr, S ; Rabiee, N ; Hajebi, S ; Ahmadi, S ; Fatahi, Y ; Hosseini, M ; Bagherzadeh, M ; Ghadiri, A. M ; Rabiee, M ; Jajarmi, V ; Webster, T. J ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and... 

    Gellan gel comprising short PVDF based-nanofibers: the effect of piezoelectric nanofiber on the mechanical and electrical behavior

    , Article Materials Today Communications ; 2020 Mohseni, M ; Ramazani Saadat Abadi, A ; Shirazi, F. H ; Hassanzadeh Nemati, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Gel-fiber structure with the potential of extracellular matrix (ECM) mimics can be introduced as a suitable candidate for bioengineering applications. In this study, piezoelectric gellan gel-fiber was prepared with incorporating poly(vinylidenefluoride) (PVDF)/glass-flake in the gellan matrix. Glass-flake nanoparticles were modified with silane group, PVDF/glass-flake nanofibers were synthesized and short-strand nanofibers were fabricated using the mechanical homogenizer method. Brunauer–Emmett–Teller (BET), Fourier-transform infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA) analyses were used for surface modification study, and scanning electron microscopy (SEM),... 

    Mechanical modeling of silk fibroin/TiO2 and silk fibroin/fluoridated TiO2 nanocomposite scaffolds for bone tissue engineering

    , Article Iranian Polymer Journal (English Edition) ; Volume 29, Issue 3 , February , 2020 , Pages 219-224 Johari, N ; Madaah Hosseini, H. R ; Samadikuchaksaraei, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Biocompatible and biodegradable three-dimensional scaffolds are commonly porous which serve to provide suitable microenvironments for mechanical supporting and optimal cell growth. Silk fibroin (SF) is a natural and biomedical polymer with appropriate and improvable mechanical properties. Making a composite with a bioceramicas reinforcement is a general strategy to prepare a scaffold for hard tissue engineering applications. In the present study, SF was separately combined with titanium dioxide (TiO2) and fluoridated titanium dioxide nanoparticles (TiO2-F) as bioceramic reinforcements for bone tissue engineering purposes. At the first step, SF was extracted from Bombyx mori cocoons. Then,... 

    Glucose cross-linked hydrogels conjugate HA nanorods as bone scaffolds: Green synthesis, characterization and in vitro studies

    , Article Materials Chemistry and Physics ; Volume 242 , 2020 Mazaheri Karvandian, F ; Shafiei, N ; Mohandes, F ; Dolatyar, B ; Zandi, N ; Zeynali, B ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the expanding field of tissue engineering (TE), improvement of biodegradability and osteoconductivity of biomaterials are required. The use of non-toxic reagents during manufacturing processes is also necessary to decrease toxicity and increase cell viability in vivo. Herein, we present a novel approach to prepare hydroxyapatite (HA) nanorods from sea bio-wastes through a green and eco-friendly wet-chemical processing for bone TE. Highly porous natural polymer-ceramic nanocomposites made of HA, gelatin (Ge) and carboxymethyl cellulose (CMC) hydrogels are then introduced. It was found that cross-linking of the hydrogel matrix by glucose as a green reagent affected all characteristics of... 

    Bioengineering approaches for corneal regenerative medicine

    , Article Tissue Engineering and Regenerative Medicine ; Volume 17, Issue 5 , July , 2020 , Pages 567-593 Mahdavi, S. S ; Abdekhodaie, M. J ; Mashayekhan, S ; Baradaran Rafii, A ; Djalilian, A. R ; Sharif University of Technology
    Korean Tissue Engineering and Regenerative Medicine Society  2020
    Abstract
    Background:: Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. Methods:: In this review, we first discussed the anatomy of the cornea and the required properties for... 

    Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery

    , Article Materials Science and Engineering C ; Volume 113 , 2020 Rafiei, M ; Jooybar, E ; Abdekhodaie, M. J ; Alvi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, a three-dimensional tablet-like porous scaffold, comprising core-shell fibers to host proteins inside the core, was developed. The fabrication method involved the novel combination of coaxial and wet electrospinning in a single setting. Poly (ε-caprolactone) was chosen as the based polymer and bovine serum albumin was used as a model protein. These 3D tablet-like scaffolds exhibited adequate porosity and suitable pore size for cell culture and cell infiltration, in addition to appropriate mechanical properties for cartilage tissue engineering. The effects of different parameters on the behavior of the system have been studied and the 3D scaffold based on the core-shell fiber... 

    Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits

    , Article Biophysical Reviews ; Volume 12, Issue 1 , 2020 , Pages 123-133 Salehi, S. S ; Shamloo, A ; Kazemzadeh Hannani, S. K ; Sharif University of Technology
    Springer  2020
    Abstract
    Three-dimensional cell culture and the forming multicellular aggregates are superior over traditional monolayer approaches due to better mimicking of in vivo conditions and hence functions of a tissue. A considerable amount of attention has been devoted to devising efficient methods for the rapid formation of uniform-sized multicellular aggregates. Microfluidic technology describes a platform of techniques comprising microchannels to manipulate the small number of reagents with unique properties and capabilities suitable for biological studies. The focus of this review is to highlight recent studies of using microfluidics, especially droplet-based types for the formation, culture, and... 

    Enzymatic outside-in cross-linking enables single-step microcapsule production for high-throughput three-dimensional cell microaggregate formation

    , Article Materials Today Bio ; Volume 6 , 2020 Van Loo, B ; Salehi, S. S ; Henke, S ; Shamloo, A ; Kamperman, T ; Karperien, M ; Leijten, J ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Cell-laden hydrogel microcapsules enable the high-throughput production of cell aggregates, which are relevant for three-dimensional tissue engineering and drug screening applications. However, current microcapsule production strategies are limited by their throughput, multistep protocols, and limited amount of compatible biomaterials. We here present a single-step process for the controlled microfluidic production of single-core microcapsules using enzymatic outside-in cross-linking of tyramine-conjugated polymers. It was hypothesized that a physically, instead of the conventionally explored biochemically, controlled enzymatic cross-linking process would improve the reproducibility,... 

    CaTiO3/α-TCP coatings on CP-Ti prepared via electrospinning and pulsed laser treatment for in-vitro bone tissue engineering

    , Article Surface and Coatings Technology ; Volume 401 , 2020 Yadi, M ; Esfahani, H ; Sheikhi, M ; Mohammadi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the in-vitro bone regeneration ability of commercial pure titanium (CP-Ti) surface modified via electrospun polyvinylidene/hydroxyapatite (PVP/HA) masking and subsequent Nd-YAG pulsed laser treatment was investigated. The ratio of HA to PVP played a significant role in achieving a perfect homogenous mask on the CP-Ti. In the laser treatment process, the parameter of area scanning speed (ASS) had an important influence on the final surface morphology. A favorable range was defined for this parameter where these two conditions were satisfied: no PVP remaining and no severe substrate melting. Within a favorable range of ASS, as decreasing ASS exchanged the surface structure from... 

    Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering

    , Article International Journal of Pharmaceutics ; Volume 602 , 2021 ; 03785173 (ISSN) Ghanbari, M ; Salavati Niasari, M ; Mohandes, F ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Stem cell treatment is promising in the various disorders treatment, but its effect is confined by the adverse conditions in the damaged tissues. The utilization of hydrogels has been suggested as a procedure to defeat this issue by developing the engraftment and survival of injected stem cells. Specifically, injectable hydrogels have drawn much attention due to their shape adaptability, ease of use, and the capability to reach body parts that are hard to access. In this study, the thermosensitive injectable hydrogels based on oxidized alginate, gelatin, and carbon nitride quantum dots (CNQDs) have been fabricated for tissue engineering. The mechanical characteristics of the nanocomposite... 

    The effect of Ag incorporation on the characteristics of the polymer derived bioactive silicate phosphate glass-ceramic scaffolds

    , Article Boletin de la Sociedad Espanola de Ceramica y Vidrio ; 2021 ; 03663175 (ISSN) Paryab, A ; Godary, T ; Khalilifard, R ; Malek Khachatourian, A ; Abdollahi, F ; Abdollahi, S ; Sharif University of Technology
    Sociedad Espanola de Ceramica y Vidrio  2021
    Abstract
    In the bone tissue engineering field (BTE), it is of significant importance to develop bioactive multifunctional scaffolds with enhanced osteoconductivity, osteoinductivity, and antibacterial properties required for lost bone tissue regeneration. In this work, a bioactive glass-ceramic scaffold was manufactured via a novel polymer-derived ceramics (PDC) manufacturing method. To gain antibacterial properties, the silver ions were incorporated in controlled amount along with other precursors in the PDC processing stage. Microstructural and structural properties of the fabricated silicate-phosphate glass-ceramic scaffold were evaluated by scanning electron microscopy (SEM) equipped with energy... 

    PLGA/TiO2 nanocomposite scaffolds for biomedical applications: Fabrication, photocatalytic, and antibacterial properties

    , Article BioImpacts ; Volume 11, Issue 1 , 2021 , Pages 45-52 ; 22285652 (ISSN) Pelaseyed, S. S ; Madaah Hosseini, H. R ; Nokhbedehghan, Z ; Samadikuchaksaraei, A ; Sharif University of Technology
    Tabriz University of Medical Sciences  2021
    Abstract
    Introduction: Porous 3D scaffolds synthesized using biocompatible and biodegradable materials could provide suitable microenvironment and mechanical support for optimal cell growth and function. The effect of the scaffold porosity on the mechanical properties, as well as the TiO2 nanoparticles addition on the bioactivity, antimicrobial, photocatalytic, and cytotoxicity properties of scaffolds were investigated. Methods: In the present study, porous scaffolds consisting poly (lactide-co-glycolide) (PLGA) containing TiO2 nanoparticles were fabricated via air-liquid foaming technique, which is a novel method and has more advantages due to not using additives for nucleation compared to former...