Loading...
Search for: torque
0.014 seconds
Total 193 records

    Submaximal electromyography-driven musculoskeletal modeling of the human trunk during static tasks: Equilibrium and stability analyses

    , Article Journal of Electromyography and Kinesiology ; Volume 65 , 2022 ; 10506411 (ISSN) Ghezelbash, F ; Shirazi Adl, A ; Gagnon, D ; Shahvarpour, A ; Arjmand, N ; Eskandari, A. H ; Larivière, C ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Conventional electromyography-driven (EMG) musculoskeletal models are calibrated during maximum voluntary contraction (MVC) tasks, but individuals with low back pain cannot perform unbiased MVCs. To address this issue, EMG-driven models can be calibrated in submaximal tasks. However, the effects of maximal (when data points include the maximum contraction) and submaximal calibration techniques on model outputs (e.g., muscle forces, spinal loads) remain yet unknown. We calibrated a subject-specific EMG-driven model, using maximal/submaximal isometric contractions, and simulated different independent tasks. Both approaches satisfactorily predicted external moments (Pearson's correlation ∼... 

    Dynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speed

    , Article Applied Mathematical Modelling ; Volume 65 , 2019 , Pages 566-585 ; 0307904X (ISSN) Golnary, F ; Moradi, H ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    The main propose of this paper is extracting the maximum efficiency from variable speed wind turbine, which is modelled as an electromechanical system with two masses dynamics. The maximum efficiency can be obtained by tracking the optimal rotor speed, which is controlled by the generator torque as the input. One of the most important information that is required for designing of the control system is the measurement of the effective wind velocity. In this paper, a new ANFIS-based method for estimating the effective wind velocity is developed. The aerodynamic torque has a direct relationship with the power coefficient. So in this paper, power coefficient of WindPACT 1.5 MW turbine as a... 

    Dynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speed

    , Article Applied Mathematical Modelling ; Volume 65 , 2019 , Pages 566-585 ; 0307904X (ISSN) Golnary, F ; Moradi, H ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    The main propose of this paper is extracting the maximum efficiency from variable speed wind turbine, which is modelled as an electromechanical system with two masses dynamics. The maximum efficiency can be obtained by tracking the optimal rotor speed, which is controlled by the generator torque as the input. One of the most important information that is required for designing of the control system is the measurement of the effective wind velocity. In this paper, a new ANFIS-based method for estimating the effective wind velocity is developed. The aerodynamic torque has a direct relationship with the power coefficient. So in this paper, power coefficient of WindPACT 1.5 MW turbine as a... 

    The influence of vertical deflection of the supports in modeling squeeze film damping in torsional micromirrors

    , Article Microelectronics Journal ; Volume 43, Issue 8 , 2012 , Pages 530-536 ; 00262692 (ISSN) Moeenfard, H ; Taghi Ahmadian, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The objective of this work is to create an analytical framework to study the problem of squeezed film damping in micromirrors considering the bending of the supporting torsion microbeams. Using mathematical and physical justifications, nonlinear Reynolds equation governing the behavior of the squeezed gas underneath the mirror is linearized. The resulting linearized equation is then nondimensionalized and analytically solved for two cases of the infinitesimal and finite tilting angle of the mirror. The obtained pressure distribution from the solution of the Reynolds equation is then utilized for finding the squeezed film damping force and torque applied to the mirror. The results show that... 

    Disentangling stability and flexibility degrees in Parkinson's disease using a computational postural control model

    , Article Journal of NeuroEngineering and Rehabilitation ; Volume 16, Issue 1 , 2019 ; 17430003 (ISSN) Rahmati, Z ; Schouten, A. C ; Behzadipour, S ; Taghizadeh, G ; Firoozbakhsh, K ; Sharif University of Technology
    BioMed Central Ltd  2019
    Abstract
    Background: Impaired postural control in Parkinson's disease (PD) seriously compromises life quality. Although balance training improves mobility and postural stability, lack of quantitative studies on the neurophysiological mechanisms of balance training in PD impedes the development of patient-specific therapies. We evaluated the effects of a balance-training program using functional balance and mobility tests, posturography, and a postural control model. Methods: Center-of-pressure (COP) data of 40 PD patients before and after a 12-session balance-training program, and 20 healthy control subjects were recorded in four conditions with two tasks on a rigid surface (R-tasks) and two on foam.... 

    Data-driven model-free control of torque-applying system for a mechanically closed-loop test rig using neural networks

    , Article Strojniski Vestnik/Journal of Mechanical Engineering ; Volume 66, Issue 5 , 2020 , Pages 337-347 Parvaresh, A ; Mardani, M ; Sharif University of Technology
    Assoc. of Mechanical Eng. and Technicians of Slovenia  2020
    Abstract
    This paper presents a data-driven approach that utilizes the gathered experimental data to model and control a test rig constructed for the high-powered gearboxes. For simulating a wide variety of operational conditions, the test rig should be capable of providing different speeds and torques; this is possible using a torque-applying system. For this purpose, Electro-Hydraulic Actuators (EHAs) are used. Since applying accurate torque is a crucial demand as it affects the performance evaluation of the gearboxes, precise modelling of the actuation system along with a high-performance controller are required. In order to eliminate the need for to solve complex nonlinear equations of EHA that... 

    Hybrid stepper motor backstepping control in micro-step operation

    , Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, 5 November 2005 through 11 November 2005 ; Volume 118 B, Issue 2 , 2005 , Pages 993-997 Ghafari, A. S ; Alasty, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2005
    Abstract
    A nonlinear position controller based on backstepping control technique is proposed for a hybrid stepper motor in micro-step operation. Backstepping control approach is adapted to derive the control scheme, which is robust to parameter uncertainties and external load disturbance. Simulation results clearly show that the proposed controller can track the position reference signal successfully under parameter uncertainties and load torque disturbance rejection. Copyright © 2005 by ASME  

    Hollow blades for small wind turbines operating at high atitudes

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Volume 138, Issue 6 , 2016 ; 01996231 (ISSN) Pourrajabian, A ; Amir Nazmi Afshar, P ; Mirzaei, M ; Ebrahimi, R ; Wood, D. H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    Since the air density reduces as altitude increases, operation of small wind turbines (SWTs), which usually have no pitch adjustment, remains challenging at high altitudes due largely to the reduction of starting aerodynamic torque. By reducing the moment of inertia through the use of hollow blades, this study aims to speed up the starting while maintaining the structural integrity of the blades and high output power. A horizontal axis turbine with hollow blades was designed for two sites in Iran with altitude of 500 m and 3000 m. The design variables are the distributions of the chord, twist, and shell thickness and the improvement of output power and starting are the design goals.... 

    Universal rotation of nanowires in static uniform electric fields in viscous dielectric liquids

    , Article Applied Physics Letters ; Volume 113, Issue 6 , 2018 ; 00036951 (ISSN) Farain, K ; Esfandiar, A ; Moshfegh, A. Z ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    The wide utilization of nanomanipulation as a promising approach in microorganisms, nanoelectromechanical systems, and assembly of nanostructures remarks the importance of nanostructures' motion in electric fields. Here, we study the rotational dynamics of metallic and non-metallic nanowires (NWs) in a static uniform electric field in viscous dielectric liquids. For metallic NWs, it has been theoretically shown that the electric field-induced rotation is practically independent of the geometrical dimensions and the electrical properties of NWs. Our experimental results for suspended silver (Ag) NWs in microscope oil are perfectly in agreement with this model. However, in the case of TiO2... 

    High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement

    , Article Proceedings of the International Symposium on Low Power Electronics and Design ; 2011 , p. 79-84 ; ISSN: 15334678 ; ISBN: 9781612846590 Jadidi, A ; Arjomand, M ; Sarbazi-Azad, H ; Sharif University of Technology
    Abstract
    In this paper, we propose a run-time strategy for managing writes onto last level cache in chip multiprocessors where STT-RAM memory is used as baseline technology. To this end, we assume that each cache set is decomposed into limited SRAM lines and large number of STT-RAM lines. SRAM lines are target of frequently-written data and rarely-written or read-only ones are pushed into STT-RAM. As a novel contribution, a low-overhead, fully-hardware technique is utilized to detect write-intensive data blocks of working set and place them into SRAM lines while the remaining data blocks are candidates to be remapped onto STT-RAM blocks during system operation. Therefore, the achieved cache... 

    VirSense: A novel haptic device with fixed-base motors and a gravity compensation system

    , Article Industrial Robot ; Vol. 41, Issue. 1 , 2014 , pp. 37-49 ; ISSN: 0143991X Mashayekhi, A ; Nahvi, A ; Yazdani, M ; Moghadam, M. M ; Arbabtafti, M ; Norouzi, M ; Sharif University of Technology
    Abstract
    Purpose - This paper aims to present the design and implementation of VirSense, a novel six-DOF haptic interface system, with an emphasis on its gravity compensation and fixed-base motors. Design/methodology/approach - In this paper, the design and manufacture of the VirSense robot and its comparison with the existing haptic devices are presented. The kinematic analysis of the robot, design of the components, and manufacturing of the robot are explained as well. Findings - The proposed system is employed to generate a Virtual Sense (VirSense) with fixed-base motors and a spring compensation system for counterbalancing the torques generated by the weight of the links. The fixed bases of the... 

    Using axiomatic design theory for selection of the optimum design solution and manufacturing process plans of a limited angle torque motor

    , Article Journal of Manufacturing Science and Engineering, Transactions of the ASME ; Vol. 136, Issue. 5 , 2014 ; ISSN:1096-6668 Roohnavazfar, M ; Houshmand, M ; Nasiri-Zarandi, R ; Mirsalim, M ; Sharif University of Technology
    Abstract
    The brushless dc limited angle torque motor (LATM) has been widely used in areas of aerospace equipments, robot drives, optical scanning systems and any drive systems that require limited motion, ranging from the simple ON-OFF servo valves to the accurate tracking of a reference signal. This paper presents the optimum design procedure of a brushless direct current LATM to satisfy the functional requirements (FRs) and constraints using Independence axiom in axiomatic design (AD) approach. Also, to select the best manufacturing process plan, we consider both cost and thermal performance as two effective criteria, and evaluate available alternatives by computing information content in... 

    Steady-state analysis and performance of a brushless doubly fed machine accounting for core loss

    , Article IET Electric Power Applications ; Volume 7, Issue 3 , 2013 , Pages 170-178 ; 17518660 (ISSN) Hashemnia, M. N ; Tahami, F ; Tavner, P ; Tohidi, S ; Sharif University of Technology
    2013
    Abstract
    In this study a steady-state equivalent circuit for a brushless doubly fed machine (BDFM), based upon earlier work, is introduced which takes account of core losses. Based upon some loss approximations, simple relationships have been derived, which show that the synchronous mode operation, in terms of core loss, of the BDFM is similar to the cascaded doubly fed machine. The slip-dependence of core loss resistances in the equivalent circuit has been investigated by applying energy conservation to derive machine steady-state torque-speed relations in the presence of core loss. Experimental speed measurements of the BDFM in the simple induction mode were used to identify the core loss... 

    Trajectory of human movement during sit to stand: A new modeling approach based on movement decomposition and multi-phase cost function

    , Article Experimental Brain Research ; Volume 229, Issue 2 , 2013 , Pages 221-234 ; 00144819 (ISSN) Sadeghi, M ; Andani, M. E ; Bahrami, F ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    The purpose of this work is to develop a computational model to describe the task of sit to stand (STS). STS is an important movement skill which is frequently performed in human daily activities, but has rarely been studied from the perspective of optimization principles. In this study, we compared the recorded trajectories of STS with the trajectories generated by several conventional optimization-based models (i.e., minimum torque, minimum torque change and kinetic energy cost models) and also with the trajectories produced by a novel multi-phase cost model (MPCM). In the MPCM, we suggested that any complex task, such as STS, is decomposable into successive motion phases, so that each... 

    A robotic model of transfemoral amputee locomotion for design optimization of knee controllers

    , Article International Journal of Advanced Robotic Systems ; Volume 10 , 2013 ; 17298806 (ISSN) Shandiz, M. A ; Farahmand, F ; Osman, N. A. A ; Zohoor, H ; Sharif University of Technology
    2013
    Abstract
    A two-dimensional, seven link, nine degrees of freedom biped model was developed to investigate the dynamic characteristics of normal and transfemoral amputee locomotion during the entire gait cycle. The equations of motion were derived using the Lagrange method and the stance foot-ground contact was simulated using a five-point penetration model. The joint driving torques were obtained using forward dynamic optimization of the normal human gait and applied to the intact joints of the amputee. Three types of motion controllers; frictional, elastic and hydraulic were considered for the prosthetic joints of the amputee and their design parameters were optimized to achieve the closest... 

    How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 16, Issue 3 , 2013 , Pages 291-301 ; 10255842 (ISSN) Moghadam, M. N ; Aminian, K ; Asghari, M ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    The way central nervous system manages the excess degrees of freedom to solve kinetic redundancy of musculoskeletal system remains an open question. In this study, we utilise the concept of synergy formation as a simplifying control strategy to find the muscle recruitment based on summation of identified muscle synergies to balance the biomechanical demands (biaxial external torque) during an isometric shoulder task. A numerical optimisation-based shoulder model was used to obtain muscle activation levels when a biaxial external isometric torque is imposed at the shoulder glenohumeral joint. In the numerical simulations, 12 different shoulder torque vectors in the transverse plane are... 

    Timoshenko versus Euler-Bernoulli beam theories for high speed two-link manipulator

    , Article Scientia Iranica ; Volume 20, Issue 1 , 2013 , Pages 172-178 ; 10263098 (ISSN) Zohoor, H ; Kakavand, F ; Sharif University of Technology
    2013
    Abstract
    In this paper, a two-link flexible manipulator is considered. For a prescribed motion, Timoshenko and Euler-Bernoulli beam models are considered. Using the Galerkin method, nonlinear equations of motion are solved. The Runge-Kutta method is employed for the time response integration method. A comparative study is made between the Euler-Bernoulli and Timoshenko beam models, with and without foreshortening effects. It is demonstrated that for two-link manipulators, both theories provide good models, and the results for both theories are very similar for all ranges of slenderness ratio. The findings suggest that for two-link manipulators with relatively high slenderness ratios, there is a... 

    Dynamic modeling and simulation of brushless doubly fed induction machine in consideration of core loss

    , Article IECON Proceedings (Industrial Electronics Conference) ; 2012 , Pages 1753-1757 ; 9781467324212 (ISBN) Hashemnia, M. N ; Tahami, F ; The Institute of Electrical and Electronics Engineers (IEEE); IEEE Industrial Electronics Society (IES) ; Sharif University of Technology
    2012
    Abstract
    Brushless doubly fed induction machine has recently attracted attention in variable speed generators and motor drives. In order to have a high performance control, a precise dynamic model is required. This paper aims at introducing a model of brushless doubly fed induction machine taking core loss into account. The details of model derivation are outlined and the torque relation is expressed in the general reference frame. The model is then used for simulation of the dynamic performance of the machine. The error introduced by neglecting core loss effect is also shown  

    Coupled bending and torsion effects on the squeezed film air damping in torsional micromirrors

    , Article Proceedings of the ASME Design Engineering Technical Conference, 12 August 2012 through 12 August 2012 ; Volume 5 , August , 2012 , Pages 49-55 ; 9780791845042 (ISBN) Moeenfard, H ; Kaji, F ; Ahmadi, M. T ; Sharif University of Technology
    2012
    Abstract
    The current paper presents an analytical model for the problem of squeezed film damping in micromirrors considering the bending of the supporting torsion microbeams. At the first the nonlinear Reynolds equation governing the behavior of the squeezed gas underneath the mirror is linearized. The resulting linearized equation is then nondimensionalized and analytically solved for two cases of the infinitesimal and finite tiling angle of the mirror. The obtained pressure distribution from the solution of the Reynolds equation is then utilized for finding the squeezed film damping force and torque applied to the mirror. The results show that in the case of the infinitesimal tilting angle, the... 

    Kinematics and force analysis of a 6 degrees of freedom 3-UPS mechanism with triangular platform for haptic applications

    , Article International Conference on Control, Automation and Systems ; 2012 , Pages 694-698 ; 15987833 (ISSN) ; 9781467322478 (ISBN) Khodabakhsh, M ; Sadeghpour, M ; Hassanpour, S ; Vossoughi, G ; Sharif University of Technology
    2012
    Abstract
    This paper presents inverse dynamics equations for a 3-UPS mechanism using virtual work principle. This mechanism has three UPS legs connecting the base to a triangular platform. By changing the orientation of leg's actuators a non-symmetric mechanism with a suitable workspace near the origin without any singularity is obtained. Direct and inverse kinematics Jacobian matrices of the mechanism are obtained by the Newton-Euler approach. Then the inverse dynamics problem is solved using the principle of virtual work, so that the force and torque of active actuators have been obtained by having external forces (force and torque) acted on the platform. Force analysis of the 3-UPS mechanism has...