Loading...
Search for: trajectories
0.013 seconds
Total 258 records

    Backstepping boundary control for unstable second-order hyperbolic PDEs and trajectory tracking

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009 ; Volume 4, Issue PARTS A, B AND C , 2009 , Pages 1787-1792 ; 9780791849019 (ISBN) Vatankhah, R ; Abediny, M ; Sadeghian, H ; Alasty, A ; Design Engineering Division and Computers in Engineering Division ; Sharif University of Technology
    Abstract
    In this paper, a problem of boundary feedback stabilization of second order hyperbolic partial differential equations (PDEs) is considered. These equations serve as a model for physical phenomena such as oscillatory systems like strings and beams. The controllers are designed using a backstepping method, which has been recently developed for parabolic PDEs. With the integral transformation and boundary feedback the unstable PDE is converted into a system which is stable in sense of Lyapunov. Then taylorian expansion is used to achieve the goal of trajectory tracking. It means design a boundary controller such that output of the system follows an arbitrary map. The designs are illustrated... 

    Effect of entrance position on particle dispersion in bidirectional vortex flow

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART C , 2009 , Pages 1957-1964 ; 9780791843727 (ISBN) Dehghani, S. R ; Saidi, M. H ; Mozafari, A. A ; Ghafourian, A ; Sharif University of Technology
    Abstract
    Particle dispersion in the vortex flow has been one of the most interesting subjects in recent years. Bidirectional vortex flow field is an industrial sample of rotating flow which is used to obtain advantages of better mixing and combustion. In this work penetration and dispersion quality of particles which are entering from various positions on the vortex engine walls have been numerically predicted. Head side, end side, and sidewall are considered as the entering positions. The particle has been assumed to be a rigid sphere. Initial velocity, diameter, and density of entering particles are assumed to be known. If the particle length scale is considered not to be comparable with the... 

    Formants analysis of American, Australian and British accents

    , Article Proceedings of the 4th IASTED International Conference on Human-Computer Interaction, HCI 2009 ; 2009 , Pages 336-341 Chupan, J ; Asadinia, M ; Ghorshi, S ; Sharif University of Technology
    Abstract
    This paper compares and quantifies the differences between formants of speech across accents. The crossentropy information measure is used to compare the differences between the formants of vowels of three major English accents British, American and Australian. An improved formant estimation method, based on a linear prediction model feature analysis and a hidden Markov model of formants, is employed for estimation of formant trajectories of vowels and diphthongs. The impact of vocal tract length on accent is also examined. Comparative analysis of formant space of the three accents indicates that these accents are mostly conveyed by the first two formants  

    Synchronization of two coupled pacemaker cells based on the phase response curve

    , Article Biomedical Signal Processing and Control ; Volume 4, Issue 1 , 2009 , Pages 57-66 ; 17468094 (ISSN) Gholizade Narm, H ; Azemi, A ; Khademi, M ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    In this paper, the synchronization of a pair of pacemaker cells as Sino-Atrial (SA) and Atrio-Ventricullar (AV) nodes have been studied and a new approach for synchronization, based on the concept of Phase Response Curve (PRC), has been proposed. The paper starts with presenting the necessary and sufficient conditions for synchronization in terms of the PRC parameters. Such conditions are time dependent and thus, the paper proceeds with deriving some sufficient conditions, which are not time dependent. The time-delay between the firing time of SA node and when it reaches the AV node is also considered. When the conditions for spontaneous synchronization are not valid, the synchronization is... 

    Fisherposes for human action recognition using kinect sensor data

    , Article IEEE Sensors Journal ; 2017 ; 1530437X (ISSN) Ghojogh, B ; Mohammadzade, H ; Mokari, M ; Sharif University of Technology
    Abstract
    This article proposes a new method for viewinvariant action recognition that utilizes the temporal position of skeletal joints obtained by Kinect sensor. In this method, the actions are represented as sequences of several pre-defined poses. After pre-processing, which includes skeleton alignment and scaling, the appropriate feature vectors are obtained for recognizing and discriminating the pose of every frame by the proposed Fisherposes method. The proposed regularized Mahalanobis distance metric is used in order to recognize both the involuntary and highly made-up actions at the same time. Hidden Markov Model (HMM) is then used to classify the action related to an input sequence of poses.... 

    Decentralized polynomial trajectory generation for flight formation of quadrotors

    , Article Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics ; Volume 231, Issue 4 , 2017 , Pages 690-707 ; 14644193 (ISSN) Sayyaadi, H ; Soltani, A ; Sharif University of Technology
    Abstract
    This paper deals with the decentralized polynomial trajectory generation for the formation flight of a leader-follower network of quadrotors. The proposed decentralized trajectory planning method guarantees stability of the formation in missions with aggressive trajectories or low information exchange frequencies or data loss. Moreover, designed formation protocol ensures robustness of the formation against variations of the network communication topology. First, quadrotor translational dynamics is represented as a quadruple integrator by linearizing and differentiating its equations of translational motion. Then, a formation control law for a leader-follower network of the quadruple... 

    Reducing the effects of inaccurate fault estimation in spacecraft stabilization

    , Article Journal of Aerospace Technology and Management ; Volume 9, Issue 4 , 2017 , Pages 453-460 ; 19849648 (ISSN) Moradi, R ; Alikhani, A ; Fathi Jegarkandi, M ; Sharif University of Technology
    Abstract
    Reference Governor is an important component of Active Fault Tolerant Control. One of the main reasons for using Reference Governor is to adjust/modify the reference trajectories to maintain the stability of the post-fault system, especially when a series of actuator faults occur and the faulty system can not retain the pre-fault performance. Fault estimation error and delay are important properties of Fault Detection and Diagnosis and have destructive effects on the performance of the Active Fault Tolerant Control. It is shown that, if the fault estimation provided by the Fault Detection and Diagnosis (initial “fault estimation”) is assumed to be precise (an ideal assumption), the... 

    Multi-objective optimization in graceful performance degradation and its application in spacecraft attitude fault-tolerant control

    , Article Aerospace Science and Technology ; Volume 69 , 2017 , Pages 465-473 ; 12709638 (ISSN) Moradi, R ; Alikhani, A ; Fathi Jegarkandib, M. F ; Sharif University of Technology
    Abstract
    Reducing the burden of the remaining actuators through decreasing the performance gracefully is an important field in active fault tolerant control. According to the literature, two important points have been identified in the works considering graceful performance degradation: 1) using single-objective optimization, 2) assuming an engineering insight into the performance of the faulty system. This paper has two contributions: First, it is shown that in some cases, single-objective optimization may not be able to provide a satisfactory solution for the problem. Second, a new systematic and general method is proposed to remove the need for the engineering insight. The proposed method is based... 

    Constrained tracking control for nonlinear systems

    , Article ISA Transactions ; Volume 70 , 2017 , Pages 64-72 ; 00190578 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    Abstract
    This paper proposes a tracking control strategy for nonlinear systems without needing a prior knowledge of the reference trajectory. The proposed method consists of a set of local controllers with appropriate overlaps in their stability regions and an on-line switching strategy which implements these controllers and uses some augmented intermediate controllers to ensure steering the system states to the desired set points without needing to redesign the controller for each value of set point changes. The proposed approach provides smooth transient responses despite switching among the local controllers. It should be mentioned that the stability regions of the proposed controllers could be... 

    Iterative learning control for the radio frequency subsystems of a free-electron laser

    , Article IEEE Transactions on Control Systems Technology ; 2017 ; 10636536 (ISSN) Rezaeizadeh, A ; Smith, R. S ; Sharif University of Technology
    Abstract
    In linear particle accelerators used for free-electron lasers, it is often required that the electron bunches experience the same electric field as they pass through the accelerating structures. For radio frequency (RF) pulsed mode machines, like the SwissFEL, this means that the amplitude and phase of the RF pulses feeding the structures through the waveguides should be kept constant over the pulselength. This raises an interesting problem that can be addressed by an iterative learning control (ILC) technique. This method manipulates the input waveforms iteratively, in order to generate flat amplitude and phase pulses at the output of the system. In this paper, we introduce two ILC... 

    Vehicle trajectory challenge in predictive active steering rollover prevention

    , Article International Journal of Automotive Technology ; Volume 18, Issue 3 , 2017 , Pages 511-521 ; 12299138 (ISSN) Ghazali, M ; Durali, M ; Salarieh, H ; Sharif University of Technology
    Abstract
    High center of mass vehicles are likely to rollover in extreme maneuvers. Available works present control strategies to prevent rollover. In these works, however, other important parameters such as path trajectory tracking are not a main concern. In this paper conflicts between rollover prevention and trajectory tracking is investigated. Model predictive control (MPC) is adopted to predict and avoid rollover while tracking desired trajectory. For this regard a model based future error estimation is introduced. The control framework predicts both rollover and trajectory error simultaneously. It avoids rollover while tries to track the trajectory. Simulation results for two controllers with... 

    A heuristic predictive LOS guidance law based on trajectory learning, ant colony optimization and tabu search

    , Article Proceedings - 6th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2016, 25 November 2016 through 27 November 2016 ; 2017 , Pages 163-168 ; 9781509011780 (ISBN) Nobahari, H ; Haeri, A ; Sharif University of Technology
    Abstract
    A heuristic predictive line-of-sight (LOS) guidance law is introduced to intercept a high-speed maneuvering target. A combination of continuous ant colony system and tabu search optimization algorithms is proposed to generate the optimal predictive commands of LOS guidance law. Prediction is driven by the previous positions of the target to estimate the next positions of it. Thus, the guidance system is continually solving a dynamic optimization problem in order to determine the acceleration commands by minimizing a cost function subject to actuators saturation. This innovation distinguishes the proposed guidance law from the classic LOS guidance, described by a simple relation between the... 

    Optimal control of human-like musculoskeletal arm: prediction of trajectory and muscle forces

    , Article Optimal Control Applications and Methods ; Volume 38, Issue 2 , 2017 , Pages 167-183 ; 01432087 (ISSN) Sharifi, M ; Pourtakdoust, S. H ; Parnianpour, M ; Sharif University of Technology
    Abstract
    Optimal trajectory and muscle forces of a human-like musculoskeletal arm are predicted for planar point-to-point movements using optimal control theory. The central nervous system (CNS) is modeled as an optimal controller that performs a reaching motion to final states via minimization of an objective function. For the CNS strategy, a cubic function of muscles stresses is considered as an appropriate objective function that minimizes muscles fatigue. A two-DOF nonlinear musculoskeletal planar arm model with four states and six muscle actuators is used for the evaluation of the proposed optimal strategy. The nonlinear variational formulation of the corresponding optimal control problem is... 

    Path-following in model predictive rollover prevention using front steering and braking

    , Article Vehicle System Dynamics ; Volume 55, Issue 1 , 2017 , Pages 121-148 ; 00423114 (ISSN) Ghazali, M ; Durali, M ; Salarieh, H ; Sharif University of Technology
    Abstract
    In this paper vehicle path-following in the presence of rollover risk is investigated. Vehicles with high centre of mass are prone to roll instability. Untripped rollover risk is increased in high centre of gravity vehicles and high-friction road condition. Researches introduce strategies to handle the short-duration rollover condition. In these researches, however, trajectory tracking is affected and not thoroughly investigated. This paper puts stress on tracking error from rollover prevention. A lower level model predictive front steering controller is adopted to deal with rollover and tracking error as a priority sequence. A brake control is included in lower level controller which... 

    Patient-Robot-therapist collaboration using resistive impedance controlled tele-robotic systems subjected to time delays

    , Article Journal of Mechanisms and Robotics ; Volume 10, Issue 6 , 2018 ; 19424302 (ISSN) Sharifi, M ; Salarieh, H ; Behzadipour, S ; Tavakoli, M ; Sharif University of Technology
    Abstract
    In this paper, an approach to physical collaboration between a patient and a therapist is proposed using a bilateral impedance control strategy developed for delayed tele-robotic systems. The patient performs a tele-rehabilitation task in a resistive virtual environment with the help of online assistive forces from the therapist being provided through teleoperation. Using this strategy, the patient's involuntary hand tremors can be filtered out and the effort of severely impaired patients can be amplified in order to facilitate their early engagement in physical tasks. The response of the first desired impedance model is tracked by the master robot (interacting with the patient), and the... 

    Dynamic modelling and control of a sphere-based micro robot with adjustable arm

    , Article MARSS 2018 - International Conference on Manipulation, Automation and Robotics at Small Scales, 4 July 2018 through 8 July 2018 ; 2018 ; 9781538648414 (ISBN) Esfandbod, A ; Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    Abstract
    In this article, we propose a three-dimensional model of a low-Reynolds-number swimmer that consists of three small spheres connected to a larger sphere via three perpendicular adjustable rods which enable the micro robot to swim along arbitrary trajectories. Then we focus on dynamic modelling of the swimmer and propose a control method to control the position of the micro swimmer in a low Reynolds number flow. The control aim intended in this article is that the middle sphere to follow a desired trajectory and respective simulation results from control indicates successful accomplishment in application. © 2018 IEEE  

    Swing up and arm trajectory tracking of the furuta pendulum with sliding mode control

    , Article 5th RSI International Conference on Robotics and Mechatronics, IcRoM 2017, 25 October 2017 through 27 October 2017 ; 2018 , Pages 346-351 ; 9781538657034 (ISBN) Karamin Manesh, M. J ; Nikzad Goltapeh, A ; Sharif University of Technology
    Abstract
    In this paper, the swing-up problem of the Furuta pendulum has been solved by introducing a new combined method based on the frequency response, and the sliding mode method. Furthermore, a trajectory tracking controller has been introduced and applied to the Furuta pendulum; which the pendulum remained regulated at the upward position, while the arm tracks a desired time-varying trajectory. The hierarchical sliding mode control (HSMC) approach has been employed to achieve the mentioned goals. The Furuta system is made up of two subsystems. Based on this physical structure, the hierarchical structure of the sliding surfaces is designed as follows: first, the sliding surface of each subsystem... 

    A disambiguation technique for passive localization using trajectory analysis

    , Article IEEE Transactions on Aerospace and Electronic Systems ; 2018 ; 00189251 (ISSN) Samizadeh Nikoo, M ; Behnia, F ; Sharif University of Technology
    Abstract
    In some well-known passive localization methods, when the number of equations equals the number of unknown object coordinates, there arise finite number of possible solutions. A localization disambiguation technique is required to identify the correct solution in these cases. As an example, the exact solution of time-difference-of-arrival (TDOA) based equations for four receiver sites, leads to a couple of solutions with only one of them being the true target position. This ambiguity, conventionally is resolved by using angle-of-arrival (AOA) measurements or using an additional receiver site which increase the cost and complexity of the system. In this paper a localization disambiguation...