Loading...
Search for: tubes--components
0.004 seconds
Total 111 records

    Computation on new deformation routes of tube channel pressing considering back pressure and friction effects

    , Article Computational Materials Science ; Volume 59 , June , 2012 , Pages 174-181 ; 09270256 (ISSN) Zangiabadi, A ; Kazeminezhad, M ; Sharif University of Technology
    2012
    Abstract
    Three deformation routes for recently invented severe plastic deformation (SPD) method named tube channel pressing (TCP) have been introduced in this paper. The effects of routes, back pressure and friction have been investigated on deformation behavior of commercially pure (CP) aluminum tubes. Utilizing finite element analysis provides a broader understanding of these effects through different deformation routes. Due to the large values of strains accumulated in TCP, modified Estrin-Tóth-Molinari-Brechet (METMB) constitutive model has been employed in finite element analysis program to consider a realistic flow stress of the material in TCP. Employing experimental procedures confirms the... 

    Determination of strain field and heterogeneity in radial forging of tube using finite element method and microhardness test

    , Article Materials and Design ; Volume 38 , June , 2012 , Pages 147-153 ; 02641275 (ISSN) Sanjari, M ; Saidi, P ; Karimi Taheri, A ; Hossein Zadeh, M ; Sharif University of Technology
    2012
    Abstract
    Utilizing the Finite Element Method (FEM), the strain field in the radial forging process of tube is calculated at different process conditions and compared with the experimental results achieved using the microhardness test. The effect of various process parameters such as friction, axial feed, back push and front pull forces and die angles on the strain field are investigated. Using the results of the analysis, it is shown that the deformation inhomogeneity, introduced by an Inhomogeneity Factor (IF), is maximum in the inner zone of tube, while the minimum and the maximum effective strains are appeared at the inner zone of tube and about the core of the tube thickness, respectively. Also,... 

    Analytical Solution for Isothermal Flow in a Shock Tube Containing Rigid Granular Material

    , Article Transport in Porous Media ; Volume 93, Issue 1 , 2012 , Pages 13-27 ; 01693913 (ISSN) Hayati, A. N ; Ahmadi, M. M ; Mohammadi, S ; Sharif University of Technology
    2012
    Abstract
    Analytical solution of shock wave propagation in pure gas in a shock tube is usually addressed in gas dynamics. However, such a solution for granular media is complex due to the inclusion of parameters relating to particles configuration within the medium, which affect the balance equations. In this article, an analytical solution for isothermal shock wave propagation in an isotropic homogenous rigid granular material is presented, and a closed-form solution is obtained for the case of weak shock waves. Fluid mass and momentum equations are first written in wave and (mathematical) non-conservation forms. Afterwards by redefining the sound speed of the gas flowing inside the pores, an... 

    Simultaneous analytical solution of the complete system of double-inlet pulse tube refrigerator

    , Article Journal of Thermophysics and Heat Transfer ; Volume 26, Issue 2 , 2012 , Pages 337-344 ; 08878722 (ISSN) Ghahremani, A. R ; Saidi, M. H ; Ebrahimian, M ; Sharif University of Technology
    2012
    Abstract
    Double-inlet pulse tube refrigerators are one of the most common types of cryocoolers. There are several advantages of double-inlet pulse tube refrigerators, such as not having moving parts, reliability, and long life. Double-inlet pulse tube refrigerators have been used in several applications such as cooling the semiconductors, infrared sensors, and astronomical detectors. In the recent decade, several research efforts have been performed to investigate double-inlet pulse tube refrigerators. Generally, most of them are experimental or numerical, and the recent literature survey shows there is not an analytical solution for the complete system of a double-inlet pulse tube refrigerator,... 

    A new desalination system using a combination of heat pipe, evacuated tube and parabolic through collector

    , Article Energy Conversion and Management ; Volume 99 , July , 2015 , Pages 141-150 ; 01968904 (ISSN) Jafari Mosleh, H ; Mamouri, S. J ; Shafii, M. B ; Hakim Sima, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The solar collectors have been commonly used in desalination systems. Recent investigations show that the use of a linear parabolic through collector in solar stills can improve the efficiency of a desalination system. In this work, a combination of a heat pipe and a twin-glass evacuated tube collector is utilized with a parabolic through collector. Results show that the rate of production and efficiency can reach to 0.27 kg/(m2 h) and 22.1% when aluminum conducting foils are used in the space between the heat pipe and the twin-glass evacuated tube collector to transfer heat from the tube collector to the heat pipe. When oil is used as a medium for the transfer of heat, filling the space... 

    Different methods for calculating a view factor in radiative applications: Strip to in-plane parallel semi-cylinder

    , Article Journal of Engineering Thermophysics ; Volume 24, Issue 2 , April , 2015 , Pages 169-180 ; 18102328 (ISSN) Hajji, A. R ; Mirhosseini, M ; Saboonchi, A ; Moosavi, A ; Sharif University of Technology
    Maik Nauka-Interperiodica Publishing  2015
    Abstract
    Determining the shape factor is essential for solving radiative heat transfer problems. An important case that has various applications in the heat power plant systems is calculation of the configuration factor between the fins and the in-plane parallel semi-cylinder. In the present work, Monte Carlo method, Cross string method, and analytical solutions were implemented for this problem. Several simulations were performed by varying semi-cylinders radius and different lengths of the fin. Also, the influence of the number of emitting rays and the number of strips was studied. Considering a fin between two tubes, it is found that calculating the view factor between one tube and a fin is... 

    Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes

    , Article Materials Science and Engineering A ; Volume 528, Issue 1 , November , 2010 , Pages 180-188 ; 09215093 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    2010
    Abstract
    A novel SPD process for manufacturing of high strength tubes and cylinders by accumulative spin-bonding (ASB) is proposed. It is demonstrated that due to incremental deformation in this process, high strain rate without considerable temperature rise is achieved. This is accompanied with a high value of Zener-Hollomon parameter as a characteristic of this SPD process. ASB was applied to a commercially pure aluminum up to four cycles and its effects on the microstructure and mechanical properties were examined by optical microscopy, TEM, EBSD, microhardness and tension tests. The results show that ultra-fine grains are developed during the process by formation of subgrains at early stages... 

    Nanoscopic spontaneous motion of liquid trains: Nonequilibrium molecular dynamics simulation

    , Article Journal of Chemical Physics ; Volume 132, Issue 2 , 2010 ; 00219606 (ISSN) Bahrami, A. H ; Jalali, M. A ; Sharif University of Technology
    Abstract
    Macroscale experiments show that a train of two immiscible liquid drops, a bislug, can spontaneously move in a capillary tube because of surface tension asymmetries. We use molecular dynamics simulation of Lennard-Jones fluids to demonstrate this phenomenon for NVT ensembles in submicron tubes. We deliberately tune the strength of intermolecular forces and control the velocity of bislug in different wetting and viscosity conditions. We compute the velocity profile of particles across the tube and explain the origin of deviations from the classical parabolae. We show that the self-generated molecular flow resembles the Poiseuille law when the ratio of the tube radius to its length is less... 

    A modified solar desalination system using evacuated tube collector

    , Article Desalination ; Volume 396 , 2016 , Pages 30-38 ; 00119164 (ISSN) Shafii, M. B ; Jahangiri Mamouri, S ; Lotfi, M. M ; Jafari Mosleh, H ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Solar energy is turning to one of the important types of clean energies, due to its availability, and its potential for wide range of applications. In this work, a new passive solar desalination system is introduced, which benefits from excellences of twin-glass evacuated tube collectors. For the first time, the evacuated tube collector is not only used as the solar thermal collector, but also as a basin to heat the water. Hence, the thermal resistance between the collector and basin is virtually eliminated. Results show a considerable increase in the rate of desalinated water production and the maximum production reaches up to 0.83 kg/(m2·h). It was observed that the maximum rate of the... 

    The effects of die geometry in tube channel pressing: Severe plastic deformation

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 230, Issue 1 , 2016 , Pages 263-272 ; 14644207 (ISSN) Farshidi, MH ; Kazeminezhad, M ; Sharif University of Technology
    SAGE Publications Ltd 
    Abstract
    The effects of die geometry on the deformation behavior of aluminum 6061 alloy tube in a novel severe plastic deformation (SPD) process called tube channel pressing (TCP) were studied using the Abaqus 6.10 software. Using the optimized die geometry, 1 to 3 passes of TCP is imposed not only to validate the simulation results, but also to investigate the performance of TCP as a SPD process. The finite element method (FEM) simulation results show that the moderated plastic strain, the lower inhomogeneity in distribution of plastic strain, and the lower risk of fracture during process can be obtained using the proper die geometry. In addition, the imposed strain is a mixture of shear strain and... 

    Forming limit diagram of tubular hydroformed parts considering the through-thickness compressive normal stress

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 230, Issue 1 , 2016 , Pages 332-343 ; 14644207 (ISSN) Hashemi, R ; Abri Nia, K ; Assem Pour, A ; Khakpour Nejadkhaki, H ; Shahbazi Mastan Abad, A ; Sharif University of Technology
    SAGE Publications Ltd 
    Abstract
    In this study, the effect of a compressive normal stress has been considered in the determination of forming limit diagrams and forming limit stress diagrams to predict neck initiation failure in tube hydroforming of T-shaped parts. Computation of the forming limit diagrams and FLSDs is based on the generalized Marciniak and Kuczynski method to consider the existence of through-thickness compressive normal stress. The proposed forming limit diagrams and FLSDs were used in conjunction with ABAQUS/EXPLICIT finite element simulations to predict the onset of necking in tube hydroforming of T-shaped part. The amount of calibration pressure and axial feeding required to produce an acceptable part... 

    Application of wavefront decomposition to ray tube tracing

    , Article MMWaTT 2009 - 1st Conference on Millimeter-Wave and Terahertz Technologies ; 2009 , Pages 5-9 ; 9781424468089 (ISBN) Mohtashami, V ; Shishegar, A. A ; Sharif University of Technology
    Abstract
    This paper applies the method of decomposition of wavefronts to ray tube tracing model. Energy ray tubes which are emitted from the source are modeled by three rays and the method of decomposition of wavefronts iteratively improves the accuracy of ray tracing. Comparison with applying the method of decomposition of wavefronts to conventional ray tracing is made afterwards. It is observed that by applying the method of decomposition of wavefronts to ray tube model, the accuracy of ray tracing can be improved much more efficiently and the simulation time decreases to almost a half. ©2009 IEEE  

    Effect of pressure wave generator characteristics on pulse tube cryocooler performance

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 10, Issue PART C , 2009 , Pages 1649-1654 ; 9780791848715 (ISBN) Jafarian, A ; Sarikhani, N ; Saidi, M. H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2009
    Abstract
    Recent developments of superconductive industry require cryocoolers with cooling power higher than one Watt in the 70-80 K temperature range. High capacity pulse tube cryocoolers assure the cooling power required for operation of superconducting devices. The purpose of this paper is to investigate the influence of the pressure wave generator on high capacity pulse tube cryocooler performance. In this respect the hydrodynamic and thermal behavior of the cryocooler is explained by applying the mass and energy balance equations to different components of the cryocooler cycle. A linear temperature profile is assumed in the regenerator and nodal analysis technique is employed to simulate the tube... 

    Optimal design of a microwave power module

    , Article 2019 International Vacuum Electronics Conference, IVEC 2019, 28 April 2019 through 1 May 2019 ; 2019 ; 9781538675342 (ISBN) Aghaei, M ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Microwave power modules are the result of integration of vacuum tubes and their respective power supplies. In these modules, volume and weight are very important factors because the modules are used in many portable applications. There are many parameters that they affect the volume and weight of the microwave power module. High voltage issues are one of these factors because the required voltages of vacuum tubes are high voltage. Thermal management relates to the module volume directly. In high-voltage high-frequency converters as power supplies of vacuum tubes, parasitic elements of the transformer are dominant. Tuning the transformer parameters leads to variation in the volume of the... 

    Thermal enhancement of baseboard heaters using novel fin-tube arrays: Experiment and simulation

    , Article International Journal of Thermal Sciences ; Volume 151 , 2020 Bagheri, N ; Moosavi, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier Masson SAS  2020
    Abstract
    Baseboard heaters are a type of building heating systems that are placed along the base of the interior wall, instead of the traditional skirting. Baseboard heaters meet all the requirements of modern buildings such as thermal comfort, well-architected appearance, space-saving, efficient energy consumption, and fast thermal response. In the present study, we investigate the enhancement of the thermal output of hydronic baseboard heaters. For this purpose, several novel fin-tube arrays such as convector fins and fin-clips are proposed and the thermal performance of each array is evaluated experimentally. In addition, two different types of materials for the tubes, namely, copper and aluminum... 

    Experimental investigation of asphaltene content effect on crude oil/co2 minimum miscibility pressure

    , Article Periodica Polytechnica Chemical Engineering ; Volume 64, Issue 4 , 2020 , Pages 479-490 Ghorbani, M ; Gandomkar, A ; Montazeri, G ; Honarvar, B ; Azdarpour, A ; Rezaee, M ; Sharif University of Technology
    Budapest University of Technology and Economics  2020
    Abstract
    Minimum Miscibility Pressure (MMP) is regarded as one of the foremost parameters required to be measured in a CO2 injection process. Therefore, a reasonable approximation of the MMP can be useful for better development of injection conditions as well as planning surface facilities. In this study, the impact of asphaltene content ranging from 3.84 % to 16 % on CO2/heavy oil MMP is evaluated. In this respect, slim tube miscibility and Vanishing Interfacial Tension (VIT) tests are used. Regarding the VIT test, the Interfacial Tension (IFT) is measured by means of two methods including pendant drop and capillary apparatuses, and thereafter the MMP measurement error between slim tube and VIT... 

    Thermal-exergetic behavior of triangular vortex generators through the cylindrical tubes

    , Article International Journal of Heat and Mass Transfer ; Volume 151 , 2020 Pourhedayat, S ; Pesteei, S. M ; Ebrahimi Ghalinghie, H ; Hashemian, M ; Aqeel Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, new arrangements of triangular winglet as a turbulator are numerically studied through a cylindrical tube. Triangular winglets are commonly placed on one side of a rectangular plate and inserted inside the tube. However, in present work, the winglets are located on both sides of the rectangular plate to further enhance the thermal performance of the fluid flow through the tube. Both backward and forward configurations of the winglets are analysed. Moreover, despite the importance of “latitudinal pitch of the winglets” and “winglet-plate angle” no investigation has been evaluated these parameters which will be evaluated in this work. Moreover, as no exergetic evaluation has... 

    General variable material property formulation for the solution of autofrettaged thick-walled tubes with constant axial strains

    , Article Journal of Pressure Vessel Technology, Transactions of the ASME ; Volume 130, Issue 4 , 2008 , Pages 0412091-0412097 ; 00949930 (ISSN) Farrahi, G. H ; Hosseinian, E ; Assempour, A ; Sharif University of Technology
    2008
    Abstract
    In this paper a general variable material property (VMP) formulation for the solution of thick-walled tubes with constant axial strains was developed and compared with the alternative VMP method that is called the Hencky program The VMP method was initially developed for the analysis of plane stress and plane strain states. However, the actual autofrettage process is under constant axial strain, i.e., open-end and closed-end conditions. Results indicate very good agreement with the Hencky program. Our method is simple, accurate, and very efficient, so that the number of iterations for convergence reduces approximately to one-tenth of Hencky program iterations. The solution algorithm for... 

    Numerical simulation and performance optimization of a high capacity pulse tube cryocooler

    , Article International Communications in Heat and Mass Transfer ; Volume 35, Issue 9 , 2008 , Pages 1204-1210 ; 07351933 (ISSN) Jafarian, A ; Saidi, M. H ; Sarikhani, N ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2008
    Abstract
    Recent developments of superconductive industries require cryocoolers with cooling power higher than 1 W in the 70-80 K temperature range. High capacity pulse tube cryocoolers assure the cooling power required for operation of superconducting devices. This paper presents numerical simulation of a high capacity pulse tube cryocooler, intended to provide more than 200 W cooling power at 80 K. In this respect the behavior of the cryocooler is explained by applying the mass and energy balance equations to different components of the cryocooler. Nodal analysis technique is employed to simulate the tube section behavior numerically. To perform the system optimization the influence of key operating... 

    Flow visualization around a non-circular tube

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 19, Issue 1 , 2006 , Pages 73-82 ; 1728-144X (ISSN) Nouri Borujerdi, A ; Lavasani, A. M ; Sharif University of Technology
    Materials and Energy Research Center  2006
    Abstract
    The flow behavior around a cam shaped tube in a cross flow has been investigated experimentally using flow visualization and pressure distribution measurements. The range of attack angle and Reynolds number based on an equivalent circular diameter are within 0 < α < 360° and 2×104Reeq <3.4×104, respectively. The pressure drag features are clarified in relation to the flow behavior around the tube. It is found that the highest pressure drag coefficient occurs at α = 90° and 270° over the whole range of Reynolds number. Results show that the pressure drag coefficient of the cam - shaped tube is lower than that of a circular tube with the same surface area for more of the attack angles