Loading...
Search for: ultrasonics
0.01 seconds
Total 245 records

    Synthesis of Polycyclic Heterocycles using Benzofuranone Scaffolds via 1,3-Dipolar Cycloaddition Reactions under Green Chemistry Conditions

    , Ph.D. Dissertation Sharif University of Technology Hosseinzadeh, Nouraddin (Author) ; Matloubi Moghaddam, Firouz (Supervisor) ; Foroumadi, Alireza (Co-Supervisor)
    Abstract
    Spirooxindole compounds are naturally occurring compounds and have significant biological activities due to their unique spatial structure. Spirooxindole compounds, especially spiro oxindoles containing acyclic ring at C-3 position of oxindole, have high interaction capability with large productions. Therefore, these compounds are important in medicinal chemistry. The method used for the synthesis of spirooxindole compounds has been introduced. In general, for the synthesis of these compounds, isatin derivatives are used in 1 and 3 dipolar reactions in the presence of various solvents and catalysts. Due to the presence of quaternary spiro carbon with sp3 hybridization in the structure of... 

    Effect Of Longitudinally Ultrasonic Assisted Milling On Surface Integrity of CFRP Composites

    , M.Sc. Thesis Sharif University of Technology Charkhian, Ali (Author) ; Akbari, Javad (Supervisor)
    Abstract
    Nowadays, processes with the ability to machine advanced materials are very much needed by industries. Therefore, compare of a rotary ultrasonic-assisted machining process with a conventional machining process is carried out in this study. In order to evaluate this process, the milling and drilling processes are conducted on the carbon fiber-reinforced polymer composite and titanium materials where cutting forces, surface roughness, and fiber pull-out are selected as critical factors for analysis. As a result, it is seen that rotary ultrasonic-assisted machining has a good performance in the milling and drilling of advanced materials. In particular, it is shown that fiber pull-out is... 

    Evaluation of Mechanical Properties of Rammed Earth Exposed to High Temperature and Flame with Destructive and Non-Destructive Tests

    , M.Sc. Thesis Sharif University of Technology Ziaadiny Dashtkhaki, Aref (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    The environmental friendliness and sustainable development of rammed earth structures has attracted the attention of numerous researchers in recent years. Obviously, a better understanding of the structural and mechanical performance of rammed earth is the way to use rammed earth as a sustainable building material. Structural fire safety is one of the primary considerations in the design of structures. Several experiments and investigations had been conducted to investigate the behavior of materials at high temperatures. Base on author knowledge at present, few studies are available on thermomechanical properties of earthen construction materials at temperatures higher than 100°C and even... 

    Durability Evaluation and Health Monitoring of Microcracked Slag-Based Geopolymer Concrete Due to Step by Step Pressure Loading

    , M.Sc. Thesis Sharif University of Technology Keyvan, Kaveh (Author) ; Ghaemian, Mohsen (Supervisor) ; Toufigh, Vahab (Co-Supervisor)
    Abstract
    The goal of this research is to study the effect of local microcracking due to step by step pressure loading on the durability properties of geopolymer concrete. To better understand the behavior of GGBS-based GPC under different pressure stress levels, some experiments such as water permeability and water absorption conducted on the samples at each state of damage. Also, non-destructive tests such as ultrasonic waveform and pulse velocity (UPV) was used to quantify the extent of damage at each step. GGBFS and a blend of sodium silicate solution and 10 molar sodium hydroxide solution with SSSH⁄ ratio of 2 were used for production of GPC samples. GPC, OGPC and OPC samples with water to binder... 

    Deep learning-based Models for Distributed Damage Detection and Quantification in Concrete Using Sinusoidal Ultrasonic Response Signals

    , M.Sc. Thesis Sharif University of Technology Ranjbar, Iman (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    In this thesis, supervised and unsupervised deep learning-based frameworks were proposed for distributed damage detection and quantification in concrete using sinusoidal ultrasonic response signals. Before the main study on ultrasonic-based concrete damage assessment, a preliminary study was performed on deep learning-based concrete compressive strength prediction. In this study, convolutional neural networks were utilized to predict the compressive strength of concrete through its mix proportions. The Genetic algorithm was employed to find the optimum number of filters in each convolutional layer of the convolutional neural networks. The proposed framework demonstrated high accuracy in...