Loading...
Search for: ultrastructure
0.008 seconds
Total 48 records

    Mechanical properties of graphene cantilever from atomic force microscopy and density functional theory

    , Article Nanotechnology ; Volume 21, Issue 18 , 2010 ; 09574484 (ISSN) Rasuli, R ; Iraji Zad, A ; Ahadian, M. M ; Sharif University of Technology
    2010
    Abstract
    We have studied the mechanical properties of a few-layer graphene cantilever (FLGC) using atomic force microscopy (AFM). The mechanical properties of the suspended FLGC over an open hole have been derived from the AFM data. Force displacement curves using the Derjaguin-Müller-Toporov (DMT) and the massless cantilever beam models yield a Young modulus of Ec ∼ 37, Ea ∼ 0.7TPa and a Hamakar constant of ∼ 3 × 10 -18J. The threshold force to shear the FLGC was determined from a breaking force and modeling. In addition, we studied a graphene nanoribbon (GNR), which is a system similar to the FLGC; using density functional theory (DFT). The in-plane Young's modulus for the GNRs were calculated from... 

    Joint mapping of mobility and trap density in colloidal quantum dot solids

    , Article ACS Nano ; Volume 7, Issue 7 , 2013 , Pages 5757-5762 ; 19360851 (ISSN) Stadler, P ; Sutherland, B. R ; Ren, Y ; Ning, Z ; Simchi, A ; Thon, S. M ; Hoogland, S ; Sargent, E. H ; Sharif University of Technology
    2013
    Abstract
    Field-effect transistors have been widely used to study electronic transport and doping in colloidal quantum dot solids to great effect. However, the full power of these devices to elucidate the electronic structure of materials has yet to be harnessed. Here, we deploy nanodielectric field-effect transistors to map the energy landscape within the band gap of a colloidal quantum dot solid. We exploit the self-limiting nature of the potentiostatic anodization growth mode to produce the thinnest usable gate dielectric, subject to our voltage breakdown requirements defined by the Fermi sweep range of interest. Lead sulfide colloidal quantum dots are applied as the active region and are treated... 

    In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process

    , Article Materials Science and Engineering C ; Volume 33, Issue 1 , 2013 , Pages 390-396 ; 09284931 (ISSN) Rezaei, A ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which has been extensively used in medicine as implantable materials, owing to its good biocompatibility, bioactivity high osteoconductive, and/or osteoinductive properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL), a newly remarkable biocompatible and biodegradable polymer, was employed as a matrix and hydroxyapatite nanoparticles were used as a reinforcement element of the composite. HA/PCL nanocomposites were... 

    Investigating the effects of amino acid-based surface modification of carbon nanoparticles on the kinetics of insulin amyloid formation

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 176 , 2019 , Pages 471-479 ; 09277765 (ISSN) Kalhor, H. R ; Yahyazadeh, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Surface functionality of nanoparticles has been pivotal in defining interactions of nanoparticles and biomolecules. To explore various functionalities on the surface of nanoparticle through a facile procedure, various carbon-based nanoparticles, modified with a specific natural amino acid, were synthesized; the amino acids were chosen in order that almost all classes of amino acids were included. After characterizations of the nanoparticles using several spectroscopic methods, the effects of surface modification of nanoparticles were examined against amyloid formation, exploiting insulin as a model amyloidogenic polypeptide. Although most amino acids afforded carbon nanoparticles, only... 

    Interaction of 3D dewetting nanodroplets on homogeneous and chemically heterogeneous substrates

    , Article Journal of Physics Condensed Matter ; Vol. 26, Issue. 22 , 2014 ; ISSN: 09538984 Asgari, M ; Moosavi, A ; Sharif University of Technology
    Abstract
    Long-time interaction of dewetting nanodroplets is investigated using a long-wave approximation method. Although three-dimensional (3D) droplets evolution dynamics exhibits qualitative behavior analogous to two-dimensional (2D) dynamics, there is an extensive quantitative difference between them. 3D dynamics is substantially faster than 2D dynamics. This can be related to the larger curvature and, as a consequence, the larger Laplace pressure difference between the droplets in 3D systems. The influence of various chemical heterogeneities on the behavior of droplets has also been studied. In the case of gradient surfaces, it is shown how the gradient direction could change the dynamics. For a... 

    Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: A conductive scaffold for tissue engineering demands

    , Article International Journal of Biological Macromolecules ; Volume 126 , 2019 , Pages 310-317 ; 01418130 (ISSN) Pourjavadi, A ; Doroudian, M ; Ahadpour, A ; Azari, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Scaffolds for tissue engineering of specific sites such as cardiac, nerve, and bone tissues need a comprehensive design of three dimensional materials that covers all aspects of chemical composition and physical structures, required for regeneration of desired cells. Hydrogels, possessing highly hydrated and interconnected structures, are promising materials for tissue engineering applications. Improvement of an injectable hydrogel from biocompatible polysaccharides and poly‑N‑isopropyl acryl amide enriched with Au nanoparticles are the main goal of this study. Two main enhancements in this study are included mixture design of the components and addition of Au nanoparticles to access a... 

    Highly efficient hydroxyapatite/TiO2 composites covered by silver halides as E. coli disinfectant under visible light and dark media

    , Article Photochemical and Photobiological Sciences ; Volume 12, Issue 10 , 2013 , Pages 1787-1794 ; 1474905X (ISSN) Azimzadehirani, M ; Elahifard, M ; Haghighi, S ; Gholami, M ; Sharif University of Technology
    2013
    Abstract
    TiO2-based photocatalysts are seen as the most common agents for the photodegradation of bacteria. In this study, AgCl/TiO2, hydroxyapatite(Hp)/AgCl/TiO2, AgI/TiO2, and Hp/AgI/TiO2 were prepared by the deposition-precipitation method on P25 TiO2 nanoparticles and were characterized by XRD, SEM, FT-IR, EDX and BET methods. The prepared composites showed high efficiency for the inactivation of Escherichia coli (E. coli) bacteria under visible light and in dark media with different catalyst amounts of 12 and 24 mg, respectively. In less than 30 min, AgI/TiO2, prepared by the combination of cationic surfactant and PVPI2, disinfected 1 × 107 colony-forming units of E. coli completely. However,... 

    Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering

    , Article International Journal of Biological Macromolecules ; Volume 74 , 2015 , Pages 360-366 ; 01418130 (ISSN) Baniasadi, H ; Ramazani S. A., A ; Mashayekhan, S ; Sharif University of Technology
    Abstract
    This paper reports on the development of conductive porous scaffolds by incorporating conductive polyaniline/graphene (PAG) nanoparticles into a chitosan/gelatin matrix for its potential application in peripheral nerve regeneration. The effect of PAG content on the various properties of the scaffold is investigated and the results showed that the electrical conductivity and mechanical properties increased proportional to the increase in the PAG loading, while the porosity, swelling ratio and in vitro biodegradability decreased. In addition, the biocompatibility was evaluated by assessing the adhesion and proliferation of Schwann cells on the prepared scaffolds using SEM and MTT assay,... 

    Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers

    , Article Nano Letters ; Volume 10, Issue 5 , April , 2010 , Pages 1632-1638 ; 15306984 (ISSN) Ghadiri, E ; Taghavinia, N ; Zakeeruddin, S. M ; Grätzel, M ; Moser, J. E ; Sharif University of Technology
    2010
    Abstract
    Nanostructured TiO2 hollow fibers have been prepared using natural cellulose fibers as a template. This cheap and easily processed material was used to produce highly porous photoanodes incorporated in dye-sensitized solar cells and exhibited remarkably enhanced electron transport properties compared to mesoscopic films made of spherical nanoparticles. Photoinjected electron lifetime, in particular, was multiplied by 3-4 in the fiber morphology, while the electron transport rate within the fibrous photoanaode was doubled. A nearly quantitative absorbed photon-to-electrical current conversion yield exceeding 95% was achieved upon excitation at 550 nm and a photovoltaic power conversion... 

    Electrospun decyl-3-methylimidazolium mono bromate/polyamide nanofibers as solid-phase microextraction coating

    , Article Journal of Chromatography A ; Volume 1516 , 2017 , Pages 35-41 ; 00219673 (ISSN) Roostaie, A ; Rastegar, S ; Najarzadegan, H ; Ehteshami, S ; Sharif University of Technology
    Abstract
    In the current study, electrospun-based ionic liquid (IL) doped polyamide (PA) nanofibers were prepared and used as the coating material of solid phase microextration device in the fiber geometry. Addition of IL, decyl-3-methylimidazolium mono bromate, increased the conductivity of the PA solution facilitating the electrospining process. The scanning electron microscopy images of decyl-3-methylimidazolium mono bromated/polyamide nanofibers showed the decreased diameter of the nanofibers in the range of 35–160 nm compared to the PA nanofiber. The factors affecting the structure of nanofibers (e.g. ratio of decyl-3-methylimidazolium mono bromate to PA, coating time and applied voltage) were... 

    Electromechanical resonator based on electrostatically actuated graphene-doped PVP nanofibers

    , Article Nanotechnology ; Volume 24, Issue 13 , 2013 ; 09574484 (ISSN) Fardindoost, S ; Mohammadi, S ; Zad, A. I ; Sarvari, R ; Shariat Panahi, S. P ; Jokar, E ; Sharif University of Technology
    2013
    Abstract
    In this paper we present experimental results describing electrical readout of the mechanical vibratory response of graphene-doped fibers by employing electrical actuation. For a fiber resonator with an approximate radius of 850 nm and length of 100 m, we observed a resonance frequency around 580 kHz with a quality factor (Q) of about 2511 in air at ambient conditions. Through the use of finite element simulations, we show that the reported frequency of resonance is relevant. We also show that the resonance frequency of the fiber resonators decreases as the bias potential is increased due to the electrostatic spring-softening effect  

    Electrochemical determination of clozapine on MWCNTs/new coccine doped ppy modified GCE: An experimental design approach

    , Article Bioelectrochemistry ; Volume 90 , 2013 , Pages 36-43 ; 15675394 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Hamzehloei, A ; Sharif University of Technology
    2013
    Abstract
    The electrooxidation of clozapine (CLZ) was studied on the surface of a glassy carbon electrode (GCE) modified with a thin film of multiwalled carbon nanotubes (MWCNTs)/new coccine (NC) doped polypyrrole (PPY) by using linear sweep voltammetry (LSV). The pH of the supporting electrolyte (D), drop size of the cast MWCNTs suspension (E) and accumulation time of CLZ on the surface of modified electrode (F) was considered as effective experimental factors and the oxidation peak current of CLZ was selected as the response. By using factorial-based response-surface methodology, the optimum values of factors were obtained as 5.44, 10 μL and 300 s for D, E and F respectively. Under the optimized... 

    Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 153 , 2016 , Pages 709-713 ; 13861425 (ISSN) Khodaveisi, J ; Haji Shabani, A. M ; Dadfarnia, S ; Rohani Moghadam, M. R ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier 
    Abstract
    A highly sensitive and simple indirect spectrophotometric method has been developed for the determination of trace amounts of inorganic mercury (Hg2 +) in aqueous media. The method is based on the inhibitory effect of Hg2 + on the activity of horseradish peroxidase (HRP) in the oxidation of ascorbic acid by hydrogen peroxide followed by the reduction of Au3 + to Au-NPs by unreacted ascorbic acid and the measurement of the absorbance of localized surface plasmon resonance (LSPR) peak of gold nanoparticles (at 530 nm) which is directly proportional to the concentration of Hg2 +. Under the optimum conditions, the calibration curve was linear in the concentration range of 1-220 ng mL- 1. Limits... 

    Characterization of carbon nanotube dispersion and filler network formation in melted polyol for nanocomposite materials

    , Article Powder Technology ; Volume 276 , 2015 , Pages 222-231 ; 00325910 (ISSN) Pircheraghi, G ; Foudazi, R ; Manas Zloczower, I ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Different grades of carbon nanotubes (CNTs) were dispersed in poly(tetramethylene ether glycol) (PTMEG) without any solvent in the presence of a block copolymer dispersing agent by ultrasonication at a temperature well above the melting point of the PTMEG. The state of CNT dispersion at different length scales was evaluated by using optical microscopy, UV-Vis spectroscopy, rheological measurements, differential scanning calorimetry, thermogravimetric analysis and sedimentation tests. Optical microscopy can be used to characterize the state of dispersion and CNT network formation on a micrometer scale, whereas UV-Vis provides useful information about the dispersion of individual CNTs at... 

    Biosynthesis of copper oxide nanoparticles with potential biomedical applications

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3983-3999 Rabiee, N ; Bagherzadeh, M ; Kiani, M ; Ghadiri, A. M ; Etessamifar, F ; Jaberizadeh, A. H ; Shakeri, A ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Introduction: In recent years, the use of cost-effective, multifunctional, environmentally friendly and simple prepared nanomaterials/nanoparticles have been emerged considerably. In this manner, different synthesizing methods were reported and optimized, but there is still lack of a comprehensive method with multifunctional properties. Materials and Methods: In this study, we aim to synthesis the copper oxide nanoparticles using Achillea millefolium leaf extracts for the first time. Catalytic activity was investigated by in situ azide alkyne cycloaddition click and also A3 coupling reaction, and optimized in terms of temperature, solvent, and time of the reaction. Furthermore, the... 

    Bioinspired nanofiber scaffold for differentiating bone marrow-derived neural stem cells to oligodendrocyte-like cells: Design, fabrication, and characterization

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3903-3920 Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Khoramgah, M. S ; Rahimi Movaghar, V ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Background: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue acces-sibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. Purpose: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. Materials and Methods: In order to achieve a sustained release of T3, this factor was... 

    Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition

    , Article Bioresource Technology ; Volume 239 , 2017 , Pages 378-386 ; 09608524 (ISSN) Mohamadzadeh Shirazi, H ; Karimi Sabet, J ; Ghotbi, C ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Microalgae as a candidate for production of biodiesel, possesses a hard cell wall that prevents intracellular lipids leaving out from the cells. Direct or in situ supercritical transesterification has the potential for destruction of microalgae hard cell wall and conversion of extracted lipids to biodiesel that consequently reduces the total energy consumption. Response surface methodology combined with central composite design was applied to investigate process parameters including: Temperature, Time, Methanol-to-dry algae, Hexane-to-dry algae, and Moisture content. Thirty-two experiments were designed and performed in a batch reactor, and biodiesel efficiency between 0.44% and 99.32% was... 

    Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4205-4224 Mohammadi Nasr, S ; Rabiee, N ; Hajebi, S ; Ahmadi, S ; Fatahi, Y ; Hosseini, M ; Bagherzadeh, M ; Ghadiri, A. M ; Rabiee, M ; Jajarmi, V ; Webster, T. J ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin...