Loading...
Search for: viruses
0.004 seconds

    Repurposing the drug, ivermectin, in COVID-19: toxicological points of view

    , Article European Journal of Medical Research ; Volume 27, Issue 1 , 2022 ; 09492321 (ISSN) Shirazi, F. M ; Mirzaei, R ; Nakhaee, S ; Nejatian, A ; Ghafari, S ; Mehrpour, O ; Sharif University of Technology
    BioMed Central Ltd  2022
    Abstract
    The global COVID-19 pandemic has affected the world’s population by causing changes in behavior, such as social distancing, masking, restricting people’s movement, and evaluating existing medication as potential therapies. Many pre-existing medications such as tocilizumab, ivermectin, colchicine, interferon, and steroids have been evaluated for being repurposed to use for the treatment of COVID-19. None of these agents have been effective except for steroids and, to a lesser degree, tocilizumab. Ivermectin has been one of the suggested repurposed medications which exhibit an in vitro inhibitory activity on SARS-CoV-2 replication. The most recommended dose of ivermectin for the treatment of... 

    Label-Free real-time detection of HBsAg using a QCM immunosensor

    , Article Clinical Laboratory ; Volume 68, Issue 4 , 2022 , Pages 707-720 ; 14336510 (ISSN) Saffari, Z ; Ghavidel, A ; Ahangari Cohan, R ; Hamidi Fard, M ; Khoobi, M ; Aghasadeghi, M ; Norouzian, D ; Sharif University of Technology
    Verlag Klinisches Labor GmbH  2022
    Abstract
    Background: Hepatitis B virus surface antigen (HBsAg) is an important protein in both diagnosis and prevention of hepatitis B infection. In the current study, a piezoelectric immunosensor based on antibody-antigen interaction was designed to detect HBsAg. A quartz crystal microbalance system was employed to detect antibody-antigen interaction. Methods: At first, an oscillator was designed to measure the resonant frequency affected by the reactants using IC 74LVC1GX04. Antibody against HBsAg was immobilized on 10 MHz AT-cut quartz crystal. The surface modifications were monitored by atomic force microscopy (AFM) and contact angle measurements. Different concentrations of antibody were used... 

    Effect of cysteine oxidation in SARS-CoV-2 receptor-binding domain on its interaction with two cell receptors: Insights from atomistic simulations

    , Article Journal of Chemical Information and Modeling ; Volume 62, Issue 1 , 2022 , Pages 129-141 ; 15499596 (ISSN) Ghasemitarei, M ; Privat Maldonado, A ; Yusupov, M ; Rahnama, S ; Bogaerts, A ; Ejtehadi, M. R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly... 

    Laboratory detection methods for the human coronaviruses

    , Article European Journal of Clinical Microbiology and Infectious Diseases ; Volume 40, Issue 2 , 2021 , Pages 225-246 ; 09349723 (ISSN) Shabani, E ; Dowlatshahi, S ; Abdekhodaie, M. J ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Coronaviruses are a group of envelop viruses which lead to diseases in birds and mammals as well as human. Seven coronaviruses have been discovered in humans that can cause mild to lethal respiratory tract infections. HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 are the low-risk members of this family and the reason for some common colds. Besides, SARS-CoV, MERS-CoV, and newly identified SARS-CoV-2, which is also known as 2019-nCoV, are the more dangerous viruses. Due to the rapid spread of this novel coronavirus and its related disease, COVID-19, a reliable, simple, fast, and low-cost detection method is necessary for patient diagnosis and tracking worldwide. Human coronaviruses detection... 

    Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders

    , Article ACS Biomaterials Science and Engineering ; Volume 8, Issue 1 , 2022 , Pages 54-81 ; 23739878 (ISSN) Ebrahimi, M ; Asadi, M ; Akhavan, O ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently... 

    Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems

    , Article Journal of Biomedical Science ; Vol. 21, issue. 1 , July , 2014 ; ISSN: 10217770 Tahamtan, A ; Ghaemi, A ; Gorji, A ; Kalhor, H. R ; Sajadian, A ; Tabarraei, A ; Moradi, A ; Atyabi, F ; Kelishadi, M ; Sharif University of Technology
    Abstract
    Cervical cancer is the second-most-common cause of malignancies in women worldwide, and the oncogenic activity of the human papilloma virus types (HPV) E7 protein has a crucial role in anogenital tumors. In this study, we have designed a therapeutic vaccine based on chitosan nanodelivery systems to deliver HPV-16 E7 DNA vaccine, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer. We have developed a Nano-chitosan (NCS) as a carrier system for intramuscular administration using a recombinant DNA vaccine expressing HPV-16 E7 (NCS-DNA E7 vaccine). NCS were characterized in vitro for their gene transfection ability. Results: The transfection of CS-pEGFP... 

    Oncolytic newcastle disease virus delivered by mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment

    , Article Virology Journal ; Volume 17, Issue 1 , 2020 Keshavarz, M ; Ebrahimzadeh, M. S ; Miri, S. M ; Dianat Moghadam, H ; Ghorbanhosseini, S. S ; Mohebbi, S. R ; Keyvani, H ; Ghaemi, A ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Human papillomavirus (HPV)-associated malignancy remain a main cause of cancer in men and women. Cancer immunotherapy has represented great potential as a new promising cancer therapeutic approach. Here, we report Mesenchymal stem cells (MSCs) as a carrier for the delivery of oncolytic Newcastle disease virus (NDV) for the treatment of HPV-associated tumor. Methods: For this purpose, MSCs obtained from the bone marrow of C57BL mice, then cultured and characterized subsequently by the flow cytometry analysis for the presence of cell surface markers. In this study, we sought out to determine the impacts of MSCs loaded with oncolytic NDV on splenic T cell and cytokine immune... 

    Green chemistry and coronavirus

    , Article Sustainable Chemistry and Pharmacy ; Volume 21 , 2021 ; 23525541 (ISSN) Ahmadi, S ; Rabiee, N ; Fatahi, Y ; Hooshmand, S. E ; Bagherzadeh, M ; Rabiee, M ; Jajarmi, V ; Dinarvand, R ; Habibzadeh, S ; Saeb, M. R ; Varma, R. S ; Shokouhimehr, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be... 

    Green chemistry and coronavirus

    , Article Sustainable Chemistry and Pharmacy ; Volume 21 , 2021 ; 23525541 (ISSN) Ahmadi, S ; Rabiee, N ; Fatahi, Y ; Hooshmand, S. E ; Bagherzadeh, M ; Rabiee, M ; Jajarmi, V ; Dinarvand, R ; Habibzadeh, S ; Saeb, M. R ; Varma, R.S ; Shokouhimehr, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be... 

    Design and Development of Electrochemical DNA Nanobiosensors for Identification and Determination of Important Biomarkers

    , Ph.D. Dissertation Sharif University of Technology Salimian, Razieh (Author) ; Shahrokhian, Saeed (Supervisor) ; Kalhor, Hamid Reza (Co-Supervisor)
    Abstract
    The main purpose of this Ph.D. Thesis is to develop DNA-based biosensors using Label-free approaches applying simple, inexpensive and fast electrochemical techniques to measure the biological markers of cancer.In the first part, a simple protocol for detection of specific-sequence DNA is introduced. In this method carbon nanotube is used as a hybridization indicator. This label-free system provides the advantage of eliminating additional labeling procedure. As the signal enhances in the presence of MWCNT and decreases in the presence of target, the fabricated sensor is known as a signal-off device. The oxidation signal of Fe(CN)63-/4- is followed as an analytical signal to detect target... 

    Proposing a Stable Treatment Strategy for Hepatitis C

    , Ph.D. Dissertation Sharif University of Technology Zeinali, Sahar (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    The purpose of this study is to propose a stable treatment strategy for hepatitis C infection by considering several practical limitations of the treatment and using control theories. First, hepatitis C disease and its transmission, diagnosis, and treatment methods have been introduced. Then, the mathematical models of hepatitis C dynamics in the body have been presented, and their ability in predicting the observed clinical behaviors of the patients has been studied. Thereafter, the extended versions of these models by considering pharmacokinetics/dynamics equations of the drugs have been proposed to have a more realistic mathematical model. After that, the practical features of the disease... 

    Transition from the Down State to the Up State of RBD Protein in SARS -CoV- 2

    , M.Sc. Thesis Sharif University of Technology Taeb, Hoda (Author) ; Ejtehadi, Mohammad Reza (Supervisor) ; Ghasemi Tarei, Maryam (Co-Supervisor)
    Abstract
    Since the first observed case in December 2019, millions of people have been infected by Coronavirus disease 2019 (COVID-¬19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS¬-CoV-¬2). Located on the viral membrane, trimeric spike glycoprotein is one of the most crucial parts of the virus’ structure as it is responsible for the attachment and entry of the virus to host cells. The spike glycoprotein undergoes hinge-like conformational movements and its receptor¬binding domains (RBD) can be in either an accessible (up) state or an inaccessible (down) state to the host cell receptors, such as ACE2. Having performed Molecular Dynamics Simulations and Targeted Molecular... 

    Numerical Study of SARS-CoV-2 Virus Dispersion in Hospital Wards

    , M.Sc. Thesis Sharif University of Technology Ahmadian, Hossein (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    The ongoing Covid-19 pandemic has driven our attention to a simulation of virus dispersion to complete our understanding of airborne transmission. A myriad of studies have shown that respiratory diseases such as MERS, SARS, and COVID-19 can be transmitted by virus-laden droplets released during coughs, sneezing, and normal breathing. To mitigate and prevent the spread of such infectious diseases, investigation of the transmission routes is of great importance. This study has been fueled to harness the CFD tool to simulate the virus-laden droplets dispersion in hospitals inwards. Because of the limitations intertwined with experimental works such as the risk of infection of experimenters, and... 

    Discrete feedback-based dynamic voltage scaling for safety critical real-time systems

    , Article Scientia Iranica ; Volume 20, Issue 3 , 2013 , Pages 647-656 ; 10263098 (ISSN) Ahmadian, A. S ; Hosseingholi, M ; Ejlali, A ; Sharif University of Technology
    2013
    Abstract
    Recently, the tradeoff between low energy consumption and high fault-tolerance has attracted a lot of attention as a key issue in the design of real-time systems. Dynamic Voltage Scaling (DVS) is commonly employed as one of the most effective low energy techniques for real-time systems. It has been observed that the use of feedback-based methods can improve the effectiveness of DVS-enabled systems. In this paper, we have investigated reducing the energy consumption of fault-tolerant hard real-time systems using the feedback control theory. Our proposed method makes the system capable of selecting the proper frequency and voltage settings in order to reduce the energy consumption, while... 

    Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation

    , Article Journal of Physical Chemistry C ; Volume 116, Issue 17 , 2012 , Pages 9653-9659 ; 19327447 (ISSN) Akhavan, O ; Choobtashani, M ; Ghaderi, E ; Sharif University of Technology
    2012
    Abstract
    Graphene-tungsten oxide composite thin films with sheetlike surface morphology were fabricated and applied in photoinactivation of viruses under visible light irradiation. Using X-ray photoelectron spectroscopy, it was found that the chemically exfoliated graphene oxide sheets incorporated in the tungsten oxide film reduced through a visible light photocatalytic reduction. In addition, annealing the films at 450 °C in air resulted in formation of W-C and W-O-C bonds to obtain graphene-tungsten oxide composite films. The composite films fabricated by this method showed an excellent visible light photocatalytic performance in photoinactivation of bacteriophage MS2 viruses, as compared to... 

    Technical and economic feasibility study of using Micro CHP in the different climate zones of Iran

    , Article Energy ; Volume 36, Issue 8 , August , 2011 , Pages 4790-4798 ; 03605442 (ISSN) Teymouri Hamzehkolaei, F ; Sattari, S ; Sharif University of Technology
    2011
    Abstract
    The growing worldwide demand for less polluting shapes of energy have led to a renewed interest in the use of Micro Combined Heat and Power (Micro CHP) technologies in the residential sector. Micro CHP have been introduced around Iran recently, and expected to diffuse more and more.In this paper, technical and economic studies for the use of Micro CHP in the different climate zones of Iran are executed. These zones are categorized in to five; Tehran, Rasht, Bandar Abbas, Ardebil and Yazd, based on weather conditions. Later on using an economic model, both annual energy savings and percentage of system profitability in each zone are calculated as well as reduction in annual emissions. It... 

    Experimental and numerical study on the effect of aluminum foil wrapping on penetration resistance of ceramic tiles

    , Article Scientia Iranica ; Volume 24, Issue 3 , 2017 , Pages 1126-1135 ; 10263098 (ISSN) Mazaheri, H ; Naghdabadi, R ; Arghavani, J ; Sharif University of Technology
    Abstract
    In this work, energy absorption of ceramic tiles wrapped by aluminum foil on its impact face is experimentally and numerically studied. Penetration tests as well as numerical simulations are employed to obtain Ballistic Limit Velocity (BLV) of the tiles. Experimental and numerical results yield BLV of bare tiles as 145 ± 2 and 141.5 m/s, respectively. For the wrapped tiles, these values are increased to 168 ± 2 and 162 m/s, respectively. Therefore, 13% increase in BLV of the ceramic tiles is obtained by just 2.4% increase in its weight. Moreover, it is shown that energy absorption of the wrapped tiles is at least 11% greater than that of the bare ones. Based on the results, the increase in... 

    Profit-based unit commitment of integrated CHP-thermal-heat only units in energy and spinning reserve markets with considerations for environmental CO2 emission cost and valve-point effects

    , Article Energy ; Volume 133 , 2017 , Pages 621-635 ; 03605442 (ISSN) Nazari, M. E ; Ardehali, M. M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    For the purposes of lowering environmental emission cost and increasing economic profit, energy efficient combined heat and power (CHP) units can be integrated with conventional separate heat and power production units to meet heat and power demands. The goal of this study is to develop and examine a novel heuristic and deterministic optimization algorithm for solving the profit-based unit commitment (PBUC) problem for a generation company with integrated CHP-thermal-heat only system for (i) satisfying demands for heat and power, (ii) selling spinning reserve for power, (iii) reducing environmental CO2 emission cost, and (iv) accounting for valve-point effects for steam turbines. For... 

    A linear programming optimization model for optimal operation strategy design and sizing of the CCHP systems

    , Article Energy Efficiency ; Volume 11, Issue 1 , 2018 , Pages 225-238 ; 1570646X (ISSN) Kialashaki, Y ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    Combined cooling, heat, and power (CCHP) system offers numerous potential advantages for the supply of energy to residential buildings in the sense of improved energy efficiency and reduced environmental burdens. To realize the potential for being more beneficial, however, such systems must reduce total costs relative to conventional systems. In this study, a linear programming optimization model was presented for optimum planning and sizing of CCHP systems. The purpose of the model is to give the design of the CCHP system by considering electrical chiller and absorption chiller simultaneously in economic viewpoint. A numerical study was conducted in Tehran to evaluate the CCHP system model.... 

    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA detection based on tellurium doped ZnO nanowires

    , Article Applied Physics A: Materials Science and Processing ; Volume 125, Issue 9 , 2019 ; 09478396 (ISSN) Khosravi Nejad, F ; Teimouri, M ; Jafari Marandi, S ; Shariati, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA (HPV DNA) detection based on tellurium doped ZnO nanowires was fabricated. The NWs were grown by hybrid thin film oxidation in the physical vapor deposition (PVD) mechanism. The morphology characterization of the synthesized NWs was performed by field emission scanning electron microscopy (FESEM) and the images demonstrated that the diameter and the length of the materialized NWs were around 50 nm and several micrometers, respectively. The high-resolution transmission electron microscopy (HRTEM) image indicated that the fabricated NWs were crystalline and their phase characterization was validated by...