Loading...
Search for: water-wave
0.012 seconds
Total 45 records

    Numerical modeling of turbulent surface wave motion using a coupled boundary element-finite difference technique

    , Article 2008 ASME Fluids Engineering Division Summer Conference, FEDSM 2008, Jacksonville, FL, 10 August 2008 through 14 August 2008 ; Volume 1, Issue PART B , 2009 , Pages 1025-1029 ; 9780791848418 (ISBN) Jamali, M ; Fluids Engineering Division, ASME ; Sharif University of Technology
    2009
    Abstract
    In this paper an effective numerical technique is presented to model turbulent motion of a standing surface wave in a tank. The equations of motion for turbulent boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM-finite difference technique is used to obtain the wave and boundary layer characteristics. A mixing-length theory is used for turbulence modeling. The results are compared with previous experimental data. Although the technique is presented for a standing surface wave, it can be easily applied to other free surface problems. Copyright © 2008 by ASME  

    Directional dependence of extreme metocean conditions for analysis and design of marine structures

    , Article Applied Ocean Research ; Volume 100 , 2020 Haghayeghi, Z. S ; Imani, H ; Karimirad, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Marine structures are typically sensitive to the direction of wind and waves, especially in extreme metocean conditions. The extreme metocean conditions and their associated predicted directions are not easily reachable from traditional design methodologies. In this research, the most probable combinations of different extreme metocean conditions along with their associated direction are predicted for the HyWind Scotland wind farm, Scotland. To achieve this, the Hierarchical Bayesian Modeling approach is applied to define the Joint Probability Distribution Function (JPDF) of four combinations of metocean parameters, including wave direction, wind direction and wind-wave misalignment. The... 

    Modeling of forced vibration of marine structural systems under dynamic loads of sea waves

    , Article 18th Australasian Coastal and Ocean Engineering Conference 2007, COASTS 2007 and the 11th Australasian Port and Harbour Conference 2007, PORTS 2007, Melbourne, VIC, 18 July 2007 through 20 July 2007 ; 2007 , Pages 560-565 ; 9781622764280 (ISBN) Jafari, A ; Kanani, A ; Farahani, R. J ; Sharif University of Technology
    2007
    Abstract
    Predicting the reaction and function of marine structures towards sea waves, is of significant importance in the design of them. There are some uncertain parameters which can be optimized to increase safety factors as well as to decrease the costs. Knowing the maximum oscillation of marine structures due to dynamic forces will play a great role on structures' safe design. The objective of this paper is to employ a reliable numerical technique to analyze the interaction between marine structures and sea waves. Simulink is an object oriented dynamic simulation package. It can develop new analysis tools aimed at a better understanding and prediction of the physics that governs the behavior of... 

    Iran atlas of offshore renewable energies

    , Article Renewable Energy ; Volume 36, Issue 1 , January , 2011 , Pages 388-398 ; 09601481 (ISSN) Abbaspour, M ; Rahimi, R ; Sharif University of Technology
    2011
    Abstract
    The aim of the present study is to provide an Atlas of IRAN Offshore Renewable Energy Resources (hereafter called 'the Atlas') to map out wave and tidal resources at a national scale, extending over the area of the Persian Gulf and Sea of Oman. Such an Atlas can provide necessary tools to identify the areas with greatest resource potential and within reach of present technology development. To estimate available tidal energy resources at the site, a two-dimensional tidally driven hydrodynamic numerical model of Persian Gulf was developed using the hydrodynamic model in the MIKE 21 Flow Model (MIKE 21HD), with validation using tidal elevation measurements and tidal stream diamonds from... 

    Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding

    , Article Ultrasonics ; Volume 49, Issue 8 , 2009 , Pages 682-695 ; 0041624X (ISSN) Rajabi, M ; Hasheminejad, S. M ; Sharif University of Technology
    Abstract
    The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global...