Loading...
Search for: wear-resistance
0.006 seconds
Total 86 records

    Surface modifications of an aluminum-magnesium alloy through reactive stir friction processing with titanium oxide nanoparticles for enhanced sliding wear resistance

    , Article Surface and Coatings Technology ; Volume 309 , 2017 , Pages 114-123 ; 02578972 (ISSN) Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Reactive friction stir processing (RFSP) has been employed to modify the surface properties of AA5052 Al-Mg alloy through grain refinement and the distribution of ultrafine hard nanoparticles (2 to 6% volume fractions of 50 nm titanium dioxide). The heat generated induced solid state reactions between the metal matrix and the reinforcement to form Al3Ti/MgO inclusions. The role of grain refinement and distributed hard nanoparticles on the tribological behavior of the alloy under dry sliding wear condition was evaluated. The wear rates and friction coefficient as well as macro- and micro-features of the worn surfaces indicate that the wear mechanism (at 3–7 kgf and 0.5 m/s) is abrasive. The... 

    Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly (methyl methacrylate)-based nanocomposites prepared by friction stir processing

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 79 , March , 2018 , Pages 246-253 ; 17516161 (ISSN) Aghajani Derazkola, H ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, alumina-reinforced poly(methyl methacrylate) nanocomposites (PMMA/Al2O3) containing up to 20 vol% nanoparticles with an average diameter of 50 nm were prepared by friction stir processing. The effects of nanoparticle volume fraction on the microstructural features and mechanical properties of PMMA were studied. It is shown that by using a frustum pin tool and employing an appropriate processing condition, i.e. a rotational speed of 1600 rpm/min and transverse velocity of 120 mm/min, defect free nanocomposites at microscale with fine distribution of the nanoparticles can successfully been prepared. Mechanical evaluations including tensile, flexural, hardness and impact tests... 

    Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy

    , Article Materials Science and Engineering A ; Volume 523, Issue 1-2 , 2009 , Pages 27-31 ; 09215093 (ISSN) Meshinchi Asl, K ; Tari, A ; Khomamizadeh, F ; Sharif University of Technology
    2009
    Abstract
    This paper focuses on the effect of deep cryogenic treatment (-196 °C) on microstructure and mechanical properties of AZ91 magnesium alloy. The execution of deep cryogenic treatment on samples changed the distribution of β precipitates. The tiny laminar β particles almost dissolved in the microstructure and the coarse divorced eutectic β phase penetrated into the matrix. This microstructural modification resulted in a significant improvement on mechanical properties of the alloy. The steady state creep rates were measured and it was found that the creep behavior of the alloy, which is dependent on the stability of the near grain boundary microstructure, was improved by the deep cryogenic... 

    A study on microstructural changes and mechanical properties in steel rods subjected to uniform and non-uniform cooling layout using a finite element analysis

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 222, Issue 12 , 2008 , Pages 1639-1649 ; 09544054 (ISSN) Nobari, A. H ; Serajzadeh, S ; Sharif University of Technology
    2008
    Abstract
    This paper presents a mathematical model for prediction of temperature history, final microstructures, and transformation kinetics in steel rods subjected to non-uniform cooling conditions. To achieve this goal, a mathematical model based on two-dimensional finite element method is developed to solve the governing heat conduction equation with non-uniform boundary conditions. The additivity rule is coupled with the finite element analysis to assess the kinetics of austenite decomposition during continuous cooling. The effect of decarburization during heating stage is also considered in the model employing Fick's second equation. To verify the predictions, time-temperature histories during... 

    The physical and mechanical properties of Cu/Al2O3 composite synthesized by internal oxidation

    , Article Materials Science and Technology Conference and Exhibition 2009, MS and T'09, 25 October 2009 through 29 October 2009, Pittsburgh, PA ; Volume 3 , 2009 , Pages 1806-1815 ; 9781615676361 (ISBN) Soleimanpour, A. M ; Abachi, P ; Alimardani, N ; Motamen, A ; Sharif University of Technology
    Abstract
    The internal Oxidation introduces a practical method for producing copper matrix composites reinforced by alumina particles. The mechanical and physical properties of alumina reinforced copper composites and alloy specimens were investigated. This experiment involves casting of Cu-Al alloys with 0.37, 1, 2 and 3 weight percent of aluminium in non-oxidizing atmosphere with pure oxygen free copper. The composite specimens produced after internal oxidation process at 950°C for 10 hours in sealed alumina crucible. The microstructures of composite specimens were studied after internal oxidation using SEM and AFM. The hardness and electrical resistivity tests were measured. The wear properties of... 

    Corrosion resistance and photocatalytic activity evaluation of electrophoretically deposited TiO 2 -rGO nanocomposite on 316L stainless steel substrate

    , Article Ceramics International ; Volume 45, Issue 11 , 2019 , Pages 13747-13760 ; 02728842 (ISSN) Azadeh, M ; Parvizy, S ; Afshar, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    TiO 2 -rGO nanocomposite coatings were obtained by electrophoretic deposition (EPD) technique of TiO 2 nanoparticles and graphene oxide (GO) on stainless steel substrate. First, GO particles were synthesized using a modified Hummers' method. GO was reduced electrochemically to form a coating in the presence of nano-sized TiO 2 particles. The influences of different parameters such as GO concentration, coupling co-electro-deposition parameters (electrophoretic duration and voltage) on thickness, surface morphology and, corrosion behavior of the as-synthesized TiO 2 -rGO nanocomposite coatings were systematically surveyed. The morphology and microstructure were investigated by field emission...