Loading...
Search for: weighing
0.009 seconds
Total 33 records

    HTS transformer windings design using distributive ratios for minimization of short circuit forces

    , Article Journal of Superconductivity and Novel Magnetism ; 2018 ; 15571939 (ISSN) Moradnouri, A ; Vakilian, M ; Hekmati, A ; Fardmanesh, M ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    High-temperature superconducting (HTS) transformers have a promising feature in reduction of total weight, total size, and the losses of large-scale distribution transformers. However, the lower leakage reactance of HTS transformers results in a higher short-circuit fault currents and electromagnetic forces. Therefore, optimization of short-circuit electromagnetic forces is one of the crucial aspects in the design of HTS transformers. In this paper, a novel analytical method is proposed for determination of optimum distributive ratios resulting in minimization of these forces for asymmetrical multi-segment windings of an HTS transformer. Employing these distributive ratios, radial and axial... 

    HTS transformer windings design using distributive ratios for minimization of short circuit forces

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 32, Issue 2 , 2019 , Pages 151-158 ; 15571939 (ISSN) Moradnouri, A ; Vakilian, M ; Hekmati, A ; Fardmanesh, M ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    High-temperature superconducting (HTS) transformers have a promising feature in reduction of total weight, total size, and the losses of large-scale distribution transformers. However, the lower leakage reactance of HTS transformers results in a higher short-circuit fault currents and electromagnetic forces. Therefore, optimization of short-circuit electromagnetic forces is one of the crucial aspects in the design of HTS transformers. In this paper, a novel analytical method is proposed for determination of optimum distributive ratios resulting in minimization of these forces for asymmetrical multi-segment windings of an HTS transformer. Employing these distributive ratios, radial and axial... 

    Graphic: Graph-based hierarchical clustering for single-molecule localization microscopy

    , Article 18th IEEE International Symposium on Biomedical Imaging, ISBI 2021, 13 April 2021 through 16 April 2021 ; Volume 2021-April , 2021 , Pages 1892-1896 ; 19457928 (ISSN); 9781665412469 (ISBN) Pourya, M ; Aziznejad, S ; Unser, M ; Sage, D ; Sharif University of Technology
    IEEE Computer Society  2021
    Abstract
    We propose a novel method for the clustering of point-cloud data that originate from single-molecule localization microscopy (SMLM). Our scheme has the ability to infer a hierarchical structure from the data. It takes a particular relevance when quantitatively analyzing the biological particles of interest at different scales. It assumes a prior neither on the shape of particles nor on the background noise. Our multiscale clustering pipeline is built upon graph theory. At each scale, we first construct a weighted graph that represents the SMLM data. Next, we find clusters using spectral clustering. We then use the output of this clustering algorithm to build the graph in the next scale; in... 

    Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter

    , Article Mechanics Based Design of Structures and Machines ; Volume 49, Issue 5 , 2021 , Pages 738-762 ; 15397734 (ISSN) Ghabussi, A ; Ashrafi, N ; Shavalipour, A ; Hosseinpour, A ; Habibi, M ; Moayedi, H ; Babaei, B ; Safarpour, H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Due to the rapid development of process manufacturing, composite materials with graphene-reinforcement have obtained commercially notices in promoted engineering applications. For this regard, vibrational characteristics of a cylindrical nanoshell reinforced by graphene nanoplatelets (GPL) and coupled with piezoelectric actuator (PIAC) is investigated. Also, the nanostructure is embedded in a viscoelastic medium. The material properties of piece-wise graphene-reinforced composite (GPLRC) are assumed to be graded in the thickness direction of a cylindrical nanoshell and estimated through a nanomechanical model. For the first time in the current study is considering the effects of... 

    Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell

    , Article Mechanics Based Design of Structures and Machines ; Volume 49, Issue 6 , 2021 , Pages 811-840 ; 15397734 (ISSN) Habibi, M ; Mohammadi, A ; Safarpour, H ; Ghadiri, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Due to rapid development of manufacturing process, composite materials with porosity have attracted commercially notices in advanced engineering applications. For this regard, buckling and vibrational characteristics of a porous composite cylindrical nanoshell reinforced with GPLs is investigated in this paper. The material properties of piece-wise graphene-reinforced composites (GPLRC) are assumed to be graded in the thickness direction of a cylindrical nanoshell and are estimated using a nanomechanical model. The novelty of our work is including the effects of porosity and GPLRC on natural frequency, critical axial load and critical temperature of the GPLRC cylindrical nanoshell. The... 

    Effect of oxygen enrichment in spectral thermal radiation in an unconfined turbulent bluff-body flame

    , Article Journal of Quantitative Spectroscopy and Radiative Transfer ; Volume 247 , 2020 Darbandi, M ; Barezban, M. B ; Fatin, A ; Bordbar, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Oxy-fuel combustion is a modern carbon capture and storage (CCS) technique that improves the combustion process and reduces the environmental penalty of many combustion systems. Evidently, the accurate radiative calculation of oxy-fuel combustion is very important to obtain more improved combustion system designs with less environmental drawbacks. In the present study, a small scale unconfined turbulent bluff-body flame is numerically simulated to calculate the gas radiative properties using three different approaches of ignoring radiation, applying a modified version of the weighted sum of gray gases (WSGG) model, and employing the spectral line based weighted sum of gray gases (SLW) model.... 

    Detecting matrices for random CDMA systems

    , Article 2013 20th International Conference on Telecommunications, ICT 2013 ; 2013 Sedaghat, M. A ; Bateni, F ; Marvasti, F ; Sharif University of Technology
    IEEE Computer Society  2013
    Abstract
    This paper studies detecting matrices in random dense and sparse Code Division Multiple Access (CDMA) systems. Detecting matrices were originally introduced in the coin weighing problem. Such matrices can be used in CDMA systems in over-loaded scheme where the number of users is greater than the number of chips. We drive some conditions in the large system limit for binary and bipolar random CDMA systems to ensure that any random matrix is a detecting matrix. Furthermore, we extend our results to sparse random ternary matrices that have been using in the sparse CDMA literature. Finally, a construction method for the sparse detecting matrices is introduced  

    Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk

    , Article International Journal of Applied Mechanics ; Volume 11, Issue 10 , 2019 ; 17588251 (ISSN) Moayedi, H ; Habibi, M ; Safarpour, H ; Safarpour, M ; Foong, L. K ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    This is the first research on the vibration and buckling analysis of a graphene nanoplatelet composite (GPLRC) microdisk in the framework of a numerical based generalized differential quadrature method (GDQM). The stresses and strains are obtained using the higher-order shear deformable theory (HOSDT). Rule of the mixture is employed to obtain varying mass density, thermal expansion, and Poisson's ratio, while the module of elasticity is computed by modified Halpin-Tsai model. Governing equations and boundary conditions of the GPLRC microdisk are obtained by implementing Extended Hamilton's principle. The results show that outer to inner ratios of the radius (Ro/Ri), ratios of length scale... 

    Buckling and frequency analysis of the nonlocal strain–stress gradient shell reinforced with graphene nanoplatelets

    , Article JVC/Journal of Vibration and Control ; Volume 25, Issue 19-20 , 2019 , Pages 2627-2640 ; 10775463 (ISSN) Mohammadgholiha, M ; Shokrgozar, A ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    SAGE Publications Inc  2019
    Abstract
    In this study, buckling and vibrational characteristics of a nanoshell reinforced with graphene nanoplatelets under uniform axial load are investigated. The material properties of the piece-wise graphene-reinforced composites (GPLRCs) are assumed to be graded in the thickness direction of a nanoshell and are estimated using a nanomechanical model. The effects of the small scale are analyzed based on nonlocal stress–strain gradient theory (NSGT). The governing equations and boundary conditions (BCs) are developed using Hamilton’s principle and are solved with assistance of the generalized differential quadrature method. The novelty of the current study is the consideration of GPLRC and size... 

    A robust keypoint extraction and matching algorithm based on wavelet transform and information theory for point-based registration in endoscopic sinus cavity data

    , Article Signal, Image and Video Processing ; 2015 , Pages 1-9 ; 18631703 (ISSN) Serej, N. D ; Ahmadian, A ; Kasaei, S ; Sadrehosseini, S. M ; Farnia, P ; Sharif University of Technology
    Springer-Verlag London Ltd  2015
    Abstract
    Feature extraction is one of the most important steps in processing endoscopic data. The extracted features should be invariant to image scale and rotation to provide a robust matching across a substantial range of affine distortions and changes in 3D space. In this study, a method is proposed on the basis of the dual-tree complex wavelet transform. First, a map is estimated for each scale, and then a Gaussian weighted additive function (GWAF) is determined. Keypoints are selected from local peaks of GWAF. The matching and registration are performed by applying normalized mutual information and our modified iterative closest point. Results are reported in terms of robustness to rotation,... 

    A robust keypoint extraction and matching algorithm based on wavelet transform and information theory for point-based registration in endoscopic sinus cavity data

    , Article Signal, Image and Video Processing ; Volume 10, Issue 5 , 2016 , Pages 983-991 ; 18631703 (ISSN) Dadashi Serej, N ; Ahmadian, A ; Kasaei, S ; Sadrehosseini, S. M ; Farnia, P ; Sharif University of Technology
    Springer-Verlag London Ltd  2016
    Abstract
    Feature extraction is one of the most important steps in processing endoscopic data. The extracted features should be invariant to image scale and rotation to provide a robust matching across a substantial range of affine distortions and changes in 3D space. In this study, a method is proposed on the basis of the dual-tree complex wavelet transform. First, a map is estimated for each scale, and then a Gaussian weighted additive function (GWAF) is determined. Keypoints are selected from local peaks of GWAF. The matching and registration are performed by applying normalized mutual information and our modified iterative closest point. Results are reported in terms of robustness to rotation,... 

    An optimal path in a bi-criteria AGV-based flexible jobshop manufacturing system having uncertain parameters

    , Article International Journal of Industrial and Systems Engineering ; Volume 13, Issue 1 , 2013 , Pages 27-55 ; 17485037 (ISSN) Fazlollahtabar, H ; Mahdavi Amiri, N ; Sharif University of Technology
    2013
    Abstract
    We propose an approach for finding an optimal path in a flexible jobshop manufacturing system considering two criteria of time and cost. With rise in demands, advancement in technology and increase in production capacity, the need for more shops persists. Therefore, a flexible jobshop system has more than one shop with the same duty. The difference among shops with the same duty is in their machines with various specifications. A network is configured in which the nodes are considered to be the shops with arcs representing the paths among the shops. An automated guided vehicle functions as a material handling device through the manufacturing network. To account for uncertainty, we consider... 

    A bi-criteria AGV-based flexible jobshop manufacturing network having uncertain parametersd

    , Article 2010 2nd International Conference on Engineering System Management and Applications, ICESMA 2010, 30 March 2010 through 1 April 2010 ; March-April , 2010 ; 9781424465200 (ISBN) Fazlollahtabar, H ; Mahdavi Amiri, N ; Sharif University of Technology
    2010
    Abstract
    We propose an approach for finding an optimal path in a flexible jobshop manufacturing system considering two criteria of time and cost. With rise in demands, advancement in technology, and increase in production capacity, the need for more shops persists. Therefore, a flexible jobshop system has more than one shop with the same duty. The difference among shops with the same duty is in their machines with various specifications. A network is configured in which the nodes are considered to be the shops with arcs representing the paths among the shops. An Automated Guided Vehicle (AGV) functions as a material handling device through the manufacturing network. To account for uncertainty, we...