Loading...
Search for: wind-power
0.009 seconds

    Modeling changes in wind speed with height in Iran's cities and its impact on the energy production

    , Article Journal of Renewable and Sustainable Energy ; Volume 7, Issue 2 , 2015 ; 19417012 (ISSN) Sedghi, M ; Boroushaki, M ; Hannani, S. K ; Sharif University of Technology
    Abstract
    The estimation of the wind resource at the hub height of a wind turbine is one of the primary goals of site assessment. Since in a majority of cities the wind speed is measured at lower heights, the power law model is applied to estimate the wind speed at higher heights. In this study, the wind data for 10 cities in Iran have been analyzed over a period of one year. The accuracy of the power law model to estimate the wind speed has been examined with variations of height and time during this year. The energy production of a wind turbine using the measured wind speeds and the speeds estimated by the power law model were compared. The measured data revealed that in some cities the wind speed... 

    On the use of pumped storage for wind energy maximization in transmission-constrained power systems

    , Article IEEE Transactions on Power Systems ; Volume 30, Issue 2 , 2015 , Pages 1017-1025 ; 08858950 (ISSN) Hozouri, M. A ; Abbaspour, A ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Sharif University of Technology
    Abstract
    Owing to wind power inherent characteristics and technical constraints of power systems operation, a considerable amount of wind energy cannot be delivered to load centers and gets curtailed. Transmission congestion together with temporal mismatch between load and available wind power can be accounted as the main reasons for this unpleasant event. This paper aims to concentrate on the wind energy curtailment for which it provides a combinatorial planning model to maximize wind power utilization. Jointly operating the wind power generation system with pumped hydro energy storage (PHES), the planning procedure tries to reach schemes with the minimum level of wind energy curtailment as well as... 

    Fuzzy generation scheduling for a generation company (GenCo) with large scale wind farms

    , Article Energy Conversion and Management ; Volume 51, Issue 10 , 2010 , Pages 1947-1957 ; 01968904 (ISSN) Siahkali, H ; Vakilian, M ; Sharif University of Technology
    Abstract
    Wind power is a promising alternative in power generation because of its tremendous environmental and social benefits. Generation scheduling (GS) is more important in a power system integrating wind farms. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in resource. This paper presents a fuzzy approach to the generation scheduling problem of a GenCo considering uncertainties in parameters or constraints such as load, reserve and available wind power generation. The modeling of constraints is an important issue in power system scheduling. A fuzzy optimization approach is an approach that can be used to obtain the generation... 

    Coordinated control approaches for low-voltage ride-through enhancement in wind turbines with doubly fed induction generators

    , Article IEEE Transactions on Energy Conversion ; Volume 25, Issue 3 , 2010 , Pages 873-883 ; 08858969 (ISSN) Rahimi, M ; Parniani, M ; Sharif University of Technology
    Abstract
    This paper deals with the coordinated control of rotor- and grid-side converters in wind turbines with doubly fed induction generators (DFIGs) to improve the low-voltage ride-through capability. The rotor-side converter control and additional equipment, called stator damping resistor, are used to limit the rotor inrush current and to reduce the oscillations and settling time of DFIG transient response during the voltage dip. Also, the grid-side converter is controlled to limit the dc-link overvoltage during the voltage drop. It is found that the dynamics of the grid-side converter and dc-link voltage exhibit nonminimum phase behavior, and thus there is an inherent limitation on the... 

    Reliability comparison of direct-drive and geared-drive wind turbine concepts

    , Article Wind Energy ; Volume 13, Issue 1 , 2010 , Pages 62-73 ; 10954244 (ISSN) Arabian Hoseynabadi, H ; Tavner, P. J ; Oraee, H ; Sharif University of Technology
    Abstract
    This paper proposes for wind turbines (WTs) an analytical reliability method, used on other engineering systems, to compare the reliability of different turbine concepts. The main focus of the paper is to compare the reliability of geared generator and direct-drive concept WTs. Modification methods are also recommended for improving the availability of WTs and geared generator concept incorporating doubly fed induction generator  

    A neural network-based model for wind farm output in probabilistic studies of power systems

    , Article 21st Iranian Conference on Electrical Engineering, ICEE 2013 ; 2013 , 14-16 May ; 9781467356343 (ISBN) Riahinia, S ; Abbaspour, A ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Sharif University of Technology
    Abstract
    The penetration of wind energy in power systems has been growing due to its interminable and mild environmental effects. The intrinsic attributes of this environmentally-friendly energy, i.e., the stochastic nature of wind farms generation, however, imposes various technical and financial challenges into power systems. So, developing an accurate wind farm modeling approach aimed at taking into account the wind generation intermittency can relieve many of these challenges. Therefore, this paper takes a step to an efficient wind farm modeling procedure employing an accurate as well as well-known Neural Network (NN)-based tool. The proposed approach is comprised of two main steps. The wind... 

    A framework for activating residential HVAC demand response for wind generation balancing

    , Article IEEE Innovative Smart Grid Technologies, 3 November 2015 through 6 November 2015 ; 2015 ; 9781509012381 (ISBN) Ali, M ; Humayun, M ; Degefa, M ; Alahaivala, A ; Lehtonen, M ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    The integration of a great deal of intermittent renewable generation in future grids will require more operational flexibility. Residential demand response can provide the load shaping potentials thereby alleviating the need for operational flexibility. This paper intends to develop a centralized framework focusing on realization of domestic heating, ventilation, and air conditioning (HVAC) demand response capability for wind power balancing. In the proposed optimization model, energy consumption of HVAC loads is optimized to tackle the variability of wind power. The thermal comfort penalty is explicitly integrated in the objective function in order to oblige different customers' thermal... 

    A control scheme to enhance low voltage ride-through of brushless doubly-fed induction generators

    , Article Wind Energy ; Volume 19, Issue 9 , 2016 , Pages 1699-1712 ; 10954244 (ISSN) Tohidi, S ; Oraee, H ; Zolghadri, M. R ; Rahimi, M ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    The use of brushless doubly-fed induction generator has been recently proposed for wind turbines because of its variable speed operation with fractional size converter without the need to brush and slip ring. This paper introduces a control scheme to improve low voltage ride-through capability of doubly-fed induction generator considering grid code requirements. The proposed control strategy is based on analysis of flux linkages and back electromotive forces and intends to retain the control-winding current below the safety limit (typically 2 pu) during severe voltage dips. The time-domain simulations validate effectiveness of the proposed scheme to protect the converter against failure as... 

    Spare parts management algorithm for wind farms using structural reliability model and production estimation

    , Article IET Renewable Power Generation ; Volume 10, Issue 7 , Volume 10, Issue 7 , 2016 , Pages 1041-1047 ; 17521416 (ISSN) Mani, S ; Oraee, A ; Oraee, H ; Sharif University of Technology
    Institution of Engineering and Technology 
    Abstract
    Doubly fed induction generators (DFIGs) are widely used in wind power systems; hence their reliability model is an important consideration for production assessment and economic analysis of wind energy conversion systems. However, to date mutual influences of reliability analysis, production estimations and economic assessments of wind farms have not been fully investigated. This study proposes a reliability model for DFIG wind turbines considering their subcomponent failure rates and downtimes. The proposed production estimation algorithm leads to an economic assessment for wind farms. A comprehensive spare parts management procedure is then presented in the study. As a case study,... 

    Generalized vector control for brushless doubly fed machines with nested-loop rotor

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 6 , 2013 , Pages 2477-2485 ; 02780046 (ISSN) Barati, F ; McMahon, R ; Shao, S ; Abdi, E ; Oraee, H ; Sharif University of Technology
    Abstract
    This paper presents a generalized vector control system for a generic brushless doubly fed (induction) machine (BDFM) with nested-loop type rotor. The generic BDFM consists of p1/p2 pole-pair stator windings and a nested-loop rotor with N number of loops per nest. The vector control system is derived based on the basic BDFM equation in the synchronous mode accompanied with an appropriate synchronization approach to the grid. An analysis is performed for the vector control system using the generic BDFM vector model. The analysis proves the efficacy of the proposed approach in BDFM electromagnetic torque and rotor flux control. In fact, in the proposed vector control system, the BDFM torque... 

    Fuzzy based generation scheduling of power system with large scale wind farms

    , Article 2009 IEEE Bucharest PowerTech: Innovative Ideas Toward the Electrical Grid of the Future ; 2009 ; 9781424422357 (ISBN) Siahkali, H ; Vakilian, M ; Sharif University of Technology
    Abstract
    Wind power introduces a new challenge to system operators. Unlike conventional power generation sources, wind power generators supply intermittent power because of uncertainty in its resource. In a power system involved largescale wind power generation scenario, wind intermittency could oblige the system operator to allocate a greater reserve power, in order to compensate the possible mismatch between predicted and the actual wind power output. This would increase the total operation cost. This paper presents a new approach in fuzzy based generation scheduling (GS) problem using mixed integer nonlinear programming (MINLP). While the reserve requirements, load generation balance and wind... 

    Dynamic behavior and transient stability analysis of fixed speed wind turbines

    , Article Renewable Energy ; Volume 34, Issue 12 , 2009 , Pages 2613-2624 ; 09601481 (ISSN) Rahimi, M ; Parniani, M ; Sharif University of Technology
    Abstract
    This paper analytically investigates the dynamic behavior of fixed speed wind turbines (FSWTs) under wind speed fluctuations and system disturbances, and identifies the nature of transient instability and system variables involved in the instability. The nature of transient instability in FSWT is not similar to synchronous generators in which the cause of instability is rotor angle instability. In this paper, the study of dynamic behavior includes modal and sensitivity analysis, dynamic behavior analysis under wind speed fluctuation, eigenvalue tracking, and using it to characterize the instability mode, and investigating possible outcomes of instability. The results of theoretical studies... 

    Operational reliability studies of power systems in presence of energy storage systems

    , Article IEEE Transactions on Power Systems ; 2017 ; 08858950 (ISSN) Parvini, Z ; Abbaspour, A ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Sharif University of Technology
    Abstract
    This paper mainly focuses on operational reliability studies of modern power systems taking into consideration the effects of energy storage systems (ESSs). The aim is to develop a new evaluation tool to assess the effects of different factors such as penetration rate, operational strategies and capacities of the ESSs in determining the role of these systems as an operating reserve resource. In this regard, at first, some modifications are made to the PJM method aimed to precisely model the short-term variability in output generation of wind farms in reliability studies. Then, this algorithm is employed to examine the effects of ESSs operating strategies in operational reliability level of... 

    Stochastic operation framework for distribution networks hosting High wind penetrations

    , Article IEEE Transactions on Sustainable Energy ; 2017 ; 19493029 (ISSN) Dorostkar Ghamsari, M. R ; Fotuhi Firuzabad, M ; Lehtonen, M ; Safdarian, A ; Hoshyarzadeh, A. S ; Sharif University of Technology
    Abstract
    In this paper, a stochastic framework including two hierarchical stages is presented for the operation of distribution systems with high penetrations of wind power. In the first stage, termed Day Ahead Market Stage (DAMS), power purchases from day-ahead (DA) market and commitment of distributed generations (DGs) are determined. The DAMS model is formulated as a mixed integer linear programming (MILP) optimization problem. The uncertainty in predictions of wind generation, real time prices, and load profile are included in the optimization problem according to a scenario-based stochastic programming approach. The risk encountered due to the uncertainties is also taken into account. The... 

    Resilient transactive control for systems with high wind penetration based on cloud computing

    , Article IEEE Transactions on Industrial Informatics ; 2017 ; 15513203 (ISSN) Rayati, M ; Ranjbar, A ; Sharif University of Technology
    Abstract
    One of the main shortcomings, caused by high penetration of wind power, is intermittency of generation. For integrating high penetration of wind power, the frequency regulation and the transactive control systems are modified to be sufficiently resilient against fluctuations of wind power and malicious cyber threats. Here, a hierarchical state-space model is presented for the frequency regulation and the transactive control systems in a smart grid environment. To achieve a resilient control, a framework based on cloud computing is proposed for the communication network. Benefits and challenges of the cloud-based framework are also described in this paper. To optimize the operation of the... 

    A unit commitment for electricity market participation of wind farms

    , Article 2017 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2017, 23 April 2017 through 26 April 2017 ; 2017 ; 9781538628904 (ISBN) Abbasi, E ; Hosseini, S. H ; Dorostkar Ghamsari, M ; Sharif University of Technology
    Abstract
    In this paper a reliability, emission, and network security constrained unit commitment (UC) with the focus on wind power integration is formulated. It is shown that clearing both energy and spinning reserve markets taking into account network constraints provides a reliable and economic solution for day-ahead operation planning of a power system with a significant amount of thermal and wind power in the generation portfolio. The developed UC is formulated and implemented in MATLAB. The IEEE 24-Bus Reliability Test System (RTS) is used to verify the UC method by simulation. © 2017 IEEE  

    Security-constrained unit commitment with integration of battery storage in wind power plant

    , Article 2017 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2017, 23 April 2017 through 26 April 2017 ; 2017 ; 9781538628904 (ISBN) Badakhshan, S ; Hajibandeh, N ; Ehsan, M ; Soleymani, S ; Sharif University of Technology
    Abstract
    There is a global tendency towards using Distributed Generation (DG) and renewable energy resources. Considering low utilization cost and low undesirable environmental effects, wind farms have become a considerable resource for producing electrical energy in many countries. Since Wind farms are not programmable and their power output which depends on weather and wind speed is uncertain, they create problems for utilizing electricity system. There are different methods for preserving system stability against the uncertainty of wind power plants. Optimal utilization of pumped storage and gas resources is one of the approaches for reducing production risk of wind farms. In this paper, it is... 

    Implementing conceptual model using renewable energies in rural area of Iran

    , Article Information Processing in Agriculture ; Volume 4, Issue 3 , 2017 , Pages 228-240 ; 22143173 (ISSN) Karami Dehkordi, M ; Kohestani, H ; Yadavar, H ; Roshandel, R ; Karbasioun, M ; Sharif University of Technology
    Abstract
    In a glance, more than three billion people live in the rural areas of low and middle income countries. In most cases, rural households have many unmet energy needs including cooking, lighting, heating, transportation and telecommunication needs. The main goal of this study is Implementing Conceptual Model Using Renewable Energies in Rural Area of Iran. In this study, the Weibull and Angestrom distribution methods were used to assess the potential of wind and solar energy range in Chaharmahal va Bakhtiari province of Iran (The Case study). After determining the values calculated based on meteorological stations' data, the IDW interpolation method in GIS software was used for the entire... 

    Effects of flexible ramping product on improving power system real-time operation

    , Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 1187-1192 ; 9781509059638 (ISBN) Khoshjahan, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Sharif University of Technology
    Abstract
    Integration of renewable energies in generation sector of power systems has caused many new issues for planners and decision makers. Therefore, new concepts such as flexibility are introduced to properly cover these problems. In this paper, a recently announced short-term flexibility product, namely, 'Flexible ramping product' (FRP) in power markets is put under investigation from different aspects. FRP is the capacity reserved to meet next upcoming five-minute net load (load minus intermittent supply) uncertainty. Therefore, at first, the mathematical model of real-time dispatch (RTD) problem in presence of the FRP is formulated. Modeling this problem as a linear programming (LP)... 

    Online hybrid model predictive controller design for cruise control of automobiles

    , Article ASME 2017 Dynamic Systems and Control Conference, DSCC 2017, 11 October 2017 through 13 October 2017 ; Volume 1 , 2017 ; 9780791858271 (ISBN) Merat, K ; Abbaszadeh Chekan, J ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    In the proposed study, a Hybrid Model Predictive Controller is introduced for cruise control of an automobile model. The presented model consists of the engine, the gearbox, and the transmission dynamics, where the aerodynamics force and elastic friction between the tires and road are taken into account. Through Piecewise Linearization of nonlinearities in the system; (torque)-(throttle)-(angular velocity) of engine and (aerodynamic drag force)-(automobile velocity), a comprehensive piecewise linear model for the system is obtained. Then combined with the switch and shift between engaged gears in gearbox, the Piecewise Affine (PWA) model for the vehicle dynamics is acquired. As far as the...