Loading...
Search for: wind-power
0.018 seconds
Total 222 records

    A new developed integrated process configuration for production of hydrogen chloride using geothermal and wind energy resources

    , Article Sustainable Energy Technologies and Assessments ; Volume 45 , 2021 ; 22131388 (ISSN) Mehrpooya, M ; Ghorbani, B ; Khalili, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ethylene dichloride thermal cracking is one of the conventional methods for hydrogen chloride production. A critical issue concerned with this method is to provide thermal energy for cracking reaction, which is generally provided by the flammable gasses inside the furnace. Utilizing renewable energy sources can be an interesting topic in this case. Hence, in this paper, the thermal integration feasibility of an ethylene dichloride cracking unit with a hybrid renewable plant, based on geothermal and wind energies, is investigated, while the case study for wind turbines system (Alstom ECO 74/1670/ Class II model) is Meshkin Shahr, located in Iran. To utilize geothermal energy, a... 

    Reliability assessment of the wind power density using uncertainty analysis

    , Article Sustainable Energy Technologies and Assessments ; Volume 44 , 2021 ; 22131388 (ISSN) Moghim, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Evaluation of the wind energy potential in different climates includes high level of uncertainties. To address the uncertainties, this study performs reliability analysis by defining a limit state function for the wind power density (WPD) to determine failure or success of the system in the probabilistic framework. The probability distributions of the variables including wind speed and air density simulated by the Weather Research and Forecasting (WRF) model with 2 km resolution are used in the limit state function to form a nondeterministic model in southwest of Iran. Given significant correlation between air density and wind speed in most of the pixels, Nataf transformation is applied to... 

    An experimental investigation into a novel small-scale device for energy harvesting using vortex-induced vibration

    , Article International Journal of Low-Carbon Technologies ; Volume 16, Issue 2 , 2021 , Pages 317-325 ; 17481317 (ISSN) Moradi Gharghani, F ; Bijarchi, M. A ; Mohammadi, O ; Shafii, M. B ; Sharif University of Technology
    Oxford University Press  2021
    Abstract
    Renewable energies could be a good solution to the problems associated with fossil fuels. The storage of wind energy by means of small-scale devices rather than large-scale turbines is a topic that has gained lots of interest. In this study, a compact device is proposed to harvest wind energy and transform it into electrical energy, by means of oscillations of a magnet into a coil, using the concept of vortex-induced vibration (VIV) behind a barrier. For a more comprehensive investigation, this system is studied from two viewpoints of fluid mechanics (without magnet) and power generation (with the magnet). For this purpose, an oscillating plate hinging on one side and three barriers with... 

    A thorough analysis of renewable hydrogen projects development in Uzbekistan using MCDM methods

    , Article International Journal of Hydrogen Energy ; Volume 46, Issue 61 , 2021 , Pages 31174-31190 ; 03603199 (ISSN) Mostafaeipour, A ; Hosseini Dehshiri, S. S ; Hosseini Dehshiri, S. J ; Almutairi, K ; Taher, R ; Issakhov, A ; Techato, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The energy supply system of Uzbekistan is not well positioned to meet the rapidly rising domestic energy demand of this country. Uzbekistan's current energy supply system is outdated and has very low diversity, as most of its energy comes from natural gas. In addition to producing immense amounts of greenhouse gas and environmental pollution, this situation is untenable considering the eventual depletion of fossil fuel reserves of this country. Uzbekistan's renewable energy sector is highly undeveloped, a situation that can be attributed to the lack of coherent policies for the advancement of renewable power and the low price of natural gas. However, this country has significant untapped... 

    A dynamic multi-sector analysis of technological catch-up: The impact of technology cycle times, knowledge base complexity and variety

    , Article Research Policy ; Volume 50, Issue 3 , 2021 ; 00487333 (ISSN) Rosiello, A ; Maleki, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This article contributes to the ongoing debate about whether, how, and under what conditions latecomer countries can become producers of new technology and innovation, thereby catching up with technological leaders. Recent work on sectoral systems of innovation and in the evolutionary economics literature suggests that successful latecomers can move into new technological or industrial domains. They specialise in domains that present more frequent windows of opportunity, shorter technological cycles, flatter learning curves and easier access to relevant knowledge than others. This study investigates the role and significance of two hitherto neglected dimensions of technological regimes that... 

    A new wind turbine driven trigeneration system applicable for humid and windy areas, working with various nanofluids

    , Article Journal of Cleaner Production ; Volume 296 , 2021 ; 09596526 (ISSN) Rostami, S ; Rostamzadeh, H ; Fatehi, R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Various methods are devised to capture renewable energy or waste heat from different sectors, where among all, waste heat capturing from the generator of a wind turbine through the cooling process for freshwater and cooling production is paid less attention in Iran, in spite of the fact that many wind farms in Iran are in hot and humid regions and the residents nearby the farms desperately need freshwater and cooling load. To surmount this problem, waste heat extraction from a wind turbine (Enercon 70 Model) for freshwater and cooling production is proposed in this study. Instead of dissipating this thermal energy of the wind turbine into the environment, it can be used for freshwater and... 

    Nonsingular terminal sliding mode control with ultra-local model and single input interval type-2 fuzzy logic control for pitch control of wind turbines

    , Article IEEE/CAA Journal of Automatica Sinica ; Volume 8, Issue 3 , 2021 , Pages 690-700 ; 23299266 (ISSN) Abrazeh, S ; Parvaresh, A ; Mohseni, S. R ; Jahanshahi Zeitouni, M ; Gheisarnejad, M ; Khooban, M. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    As wind energy is becoming one of the fastest-growing renewable energy resources, controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties. The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification. For this purpose, a novel model-independent nonsingular terminal sliding-mode control (MINTSMC) using the basic principles of the ultra-local model (ULM) and combined with the single input interval type-2 fuzzy logic control (SIT2-FLC) is developed for non-linear wind turbine pitch angle control. In the suggested control framework, the... 

    Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran

    , Article Renewable Energy ; Volume 179 , 2021 , Pages 1548-1564 ; 09601481 (ISSN) Alizadeh, S ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study presents a comprehensive framework for evaluating renewable and non-renewable power plants' performance using the Life Cycle Analysis (LCA) and emergy analysis. The emergy analysis is used to consider the free ecosystem services in the sustainability of the systems as a supplement to the LCA. The results indicate that the wind and photovoltaic power plants have the best performance in terms of the LCA analysis, while the wind and combined cycle power plants have the highest emergy sustainability index. The best scenario is chosen under a two-objective optimization problem, including the single score and emergy sustainability as objective functions. Here, the wind power plant is... 

    Use of a hybrid wind—solar—diesel—battery energy system to power buildings in remote areas: A case study

    , Article Sustainability (Switzerland) ; Volume 13, Issue 16 , 2021 ; 20711050 (ISSN) Almutairi, K ; Hosseini Dehshiri, S. S ; Hosseini Dehshiri, S. J ; Mostafaeipour, A ; Issakhov, A ; Techato, K ; Sharif University of Technology
    MDPI  2021
    Abstract
    The emerging environmental consequences of overdependence on fossil fuels have pushed many countries to invest in clean and renewable sources of power. Countries like Iran where these sources can be found in abundance can take advantage of this potential to reduce their dependence on fossil fuels. This study investigated the feasibility of the standalone use of a hybrid renewable energy system (HRES) to power buildings in the Bostegan village in the Hormozgan province of Iran. Technical, economic, and environmental assessments were performed with the help of the Hybrid Optimization of Multiple Energy Resources (HOMER) software, and the optimal configuration for the system components was... 

    Nonsingular terminal sliding mode control with ultra-local model and single input interval type-2 fuzzy logic control for pitch control of wind turbines

    , Article IEEE/CAA Journal of Automatica Sinica ; Volume 8, Issue 3 , 2021 , Pages 690-700 ; 23299266 (ISSN) Abrazeh, S ; Parvaresh, A ; Mohseni, S. R ; Zeitouni, M. J ; Gheisarnejad, M ; Khooban, M. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    As wind energy is becoming one of the fastest-growing renewable energy resources, controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties. The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification. For this purpose, a novel model-independent nonsingular terminal sliding-mode control (MINTSMC) using the basic principles of the ultra-local model (ULM) and combined with the single input interval type-2 fuzzy logic control (SIT2-FLC) is developed for non-linear wind turbine pitch angle control. In the suggested control framework, the... 

    Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: a case study in Iran

    , Article Renewable Energy ; Volume 179 , 2021 , Pages 1548-1564 ; 09601481 (ISSN) Alizadeh, S ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study presents a comprehensive framework for evaluating renewable and non-renewable power plants' performance using the Life Cycle Analysis (LCA) and emergy analysis. The emergy analysis is used to consider the free ecosystem services in the sustainability of the systems as a supplement to the LCA. The results indicate that the wind and photovoltaic power plants have the best performance in terms of the LCA analysis, while the wind and combined cycle power plants have the highest emergy sustainability index. The best scenario is chosen under a two-objective optimization problem, including the single score and emergy sustainability as objective functions. Here, the wind power plant is... 

    Use of a hybrid wind—solar—diesel—battery energy system to power buildings in remote areas: a case study

    , Article Sustainability (Switzerland) ; Volume 13, Issue 16 , 2021 ; 20711050 (ISSN) Almutairi, K ; Hosseini Dehshiri, S ; Hosseini Dehshiri, J ; Mostafaeipour, A ; Issakhov, A ; Techato, K ; Sharif University of Technology
    MDPI  2021
    Abstract
    The emerging environmental consequences of overdependence on fossil fuels have pushed many countries to invest in clean and renewable sources of power. Countries like Iran where these sources can be found in abundance can take advantage of this potential to reduce their dependence on fossil fuels. This study investigated the feasibility of the standalone use of a hybrid renewable energy system (HRES) to power buildings in the Bostegan village in the Hormozgan province of Iran. Technical, economic, and environmental assessments were performed with the help of the Hybrid Optimization of Multiple Energy Resources (HOMER) software, and the optimal configuration for the system components was... 

    Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: a case study

    , Article Energy Strategy Reviews ; Volume 36 , 2021 ; 2211467X (ISSN) Almutairi, K ; Hosseini Dehshiri,S ; Hosseini Dehshiri, J ; Mostafaeipour, A ; Jahangiri, M ; Techato, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    While Afghanistan's power sector is almost completely dependent on fossil fuels, it still cannot meet the rising power demand of this country. Deploying a combination of renewable energy systems with hydrogen production as the excess energy storage mechanism could be a sustainable long-term approach for addressing some of the energy problems of Afghanistan. Since Badakhshan is known to have a higher average wind speed than any other Afghan province, in this study, a technical, economic, and carbon footprint assessment was performed to investigate the potential for wind power and hydrogen production in this province. Wind data of four stations in Badakhshan were used for technical assessment... 

    A thorough investigation for development of hydrogen projects from wind energy: a case study

    , Article International Journal of Hydrogen Energy ; Volume 46, Issue 36 , 2021 , Pages 18795-18815 ; 03603199 (ISSN) Almutairi, K ; Hosseini Dehshiri, S ; Hosseini Dehshiri, J ; Mostafaeipour, A ; Issakhov, A ; Techato, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Increasing energy demand has led to a substantial growth in the use of wind energy across the world, which can be attributed to the low initial and running costs and rapid and easy deployment of this technology. The development of hydrogen from wind energy is an excellent way to store the excess wind power produced, as the produced hydrogen can be used not only as clean fuel but also as input for various industries. Considering the good wind potentials of Yazd province, the variety of industries that are active in this area, and the central location of this province in Iran, which gives it ample access to major transport routes and other industrial hubs, hydrogen production from wind power... 

    Ranking locations for hydrogen production using hybrid wind-solar: a case study

    , Article Sustainability (Switzerland) ; Volume 13, Issue 8 , 2021 ; 20711050 (ISSN) Almutairi, K ; Mostafaeipour, A ; Jahanshahi, E ; Jooyandeh, E ; Himri, Y ; Jahangiri, M ; Issakhov, A ; Chowdhury, S ; Hosseini Dehshiri, J ; Hosseini Dehshiri, S ; Techato, K ; Sharif University of Technology
    MDPI  2021
    Abstract
    Observing the growing energy demand of modern societies, many countries have rec-ognized energy security as a looming problem and renewable energies as a solution to this issue. Renewable hydrogen production is an excellent method for the storage and transfer of energy generated by intermittent renewable sources such as wind and solar so that they can be used at a place and time of our choosing. In this study, the suitability of 15 cities in Fars province, Iran, for renewable hydrogen production was investigated and compared by the use of multiple multi-criteria decision-making methods including ARAS, SAW, CODAS, and TOPSIS. The obtained rankings were aggregated by rank averaging, Borda... 

    Doubly fed induction generators to enhance inter-area damping based on a Robust controller: H2/ H∞ Control

    , Article SN Applied Sciences ; Volume 3, Issue 1 , 2021 ; 25233971 (ISSN) Goodarzi, A ; Ranjbar, A. M ; Dehghani, M ; Ghasemi Garpachi, M ; Ghiasi, M ; Sharif University of Technology
    Springer Nature  2021
    Abstract
    In this study, an auxiliary damping controller based on a robust controller considering the active and reactive power control loops for a doubly-fed induction generator for wind farms is proposed. The presented controller is able to improve the inter-area oscillation damping. In addition, the proposed controller applies only one accessible local signal as the input; however, it can improve the inter-area oscillation damping and, consequently the system stability for the various working conditions and uncertainties. The oscillatory modes of the system are appointed using the linear analysis. Then, the controller’s parameters are determined using the robust control approaches (H∞/ H2) with the... 

    Direct fabrication of phosphorus-doped nickel sulfide and eco-friendly biomass-derived humic acid as efficient electrodes for energy storage applications

    , Article Sustainable Energy and Fuels ; Volume 5, Issue 19 , 2021 , Pages 4869-4881 ; 23984902 (ISSN) Hekmat, F ; Shahi, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Development of renewable energies is in parallel with improving high-performance energy storage devices, which can store maximum solar or wind energy and power. Herein, asymmetric energy storage systems are constructed from phosphorus-doped nickel sulfide (P-doped NiS) and biomass-derived humic acid (HA) as positive and negative electrodes, respectively. Initially, nickel sulfide (NiS) nanostructures are directly grown onto nickel foam (NF) via a hydrothermal step. P-doping into the NiS bulk is carried out through a simple hydrothermal process as well. Also, HA is activated via carbonization treatment (A-HA) for employing as the negative electrode's active material. The P-doped NiS-NF... 

    Hybrid uncertainty-based offering strategy for virtual power plants

    , Article IET Renewable Power Generation ; Volume 14, Issue 13 , 2020 , Pages 2359-2366 Alahyari, A ; Ehsan, M ; Pozo, D ; Farrokhifar, M ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    This study proposes an optimal day-ahead (DA) electricity market offering model for a virtual power plant (VPP) formed by a mix of renewable distributed energy resources along with energy storage, such as electric vehicles. Two sources of uncertainty are considered, namely, wind power generation, modelled by an uncertainty set, and DA market price, modelled by scenarios. Opposite to classical robust optimisation approaches, the authors model maps minimal (worst-case) profits to a conservativeness parameter, while the classical robust optimisation maps conservativeness parameter to worst-case profits. In this regard, by using their optimisation framework, a VPP operator only deals with... 

    Wind farm power output optimization using cooperative control methods

    , Article Wind Energy ; 2020 Deljouyi, N ; Nobakhti, A ; Abdolahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    We study the application of cooperative control and game theoretic approaches to wind farm optimization. The conventional (greedy) wind farm control strategy seeks to individually maximize each turbine power. However, this strategy does not maximize the overall power production of wind farms due to the aerodynamic interactions (wake effect) between the turbines. We formulate the wind farm power optimization problem as an identical interest game which can also be used to solve other cooperative control problems. Two model-free learning algorithms are developed to obtain the optimal axial induction factors of the turbines and maximize power production. The algorithms are simulated for a... 

    Directional dependence of extreme metocean conditions for analysis and design of marine structures

    , Article Applied Ocean Research ; Volume 100 , 2020 Haghayeghi, Z. S ; Imani, H ; Karimirad, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Marine structures are typically sensitive to the direction of wind and waves, especially in extreme metocean conditions. The extreme metocean conditions and their associated predicted directions are not easily reachable from traditional design methodologies. In this research, the most probable combinations of different extreme metocean conditions along with their associated direction are predicted for the HyWind Scotland wind farm, Scotland. To achieve this, the Hierarchical Bayesian Modeling approach is applied to define the Joint Probability Distribution Function (JPDF) of four combinations of metocean parameters, including wave direction, wind direction and wind-wave misalignment. The...