Loading...
Search for: young-s-modulus
0.006 seconds
Total 25 records

    Fabrication of porous NiTi-shape memory alloy objects by partially hydrided titanium powder for biomedical applications

    , Article Materials and Design ; Volume 30, Issue 10 , 2009 , Pages 4483-4487 ; 02641275 (ISSN) Sadrnezhaad, S. K ; Hosseini, S. A ; Sharif University of Technology
    Abstract
    Porous NiTi-shape memory alloy (SMA) is a promising biomaterial with desirable mechanical property and appropriate biocompatibility for human implant manufacturing. In this research, porous NiTi-SMAs have been successfully produced by using thermohydrogen process (THP). This process has capability of production of homogenous structures, appropriate pore-size distributions and short sintering times. The THP-SMA samples produced in this research have a low Young's modulus (19.8 GPa) and a high tensile strength of 255 MPa. These properties are close to those of the natural bone and can meet the mechanical property demands of the hard-tissue implants for heavy load-bearing applications. The... 

    Micro resonator nonlinear dynamics considering intrinsic properties

    , Article Scientia Iranica ; Volume 16, Issue 2 B , 2009 , Pages 121-129 ; 10263098 (ISSN) Sayyaadi, H ; Tadayon, M. A ; Eftekharian, A. A ; Sharif University of Technology
    2009
    Abstract
    One of the most important phenomena to affect the motion behaviour of Micro Resonators is their thermal dependency. This has recently received the attention of researchers widely. A thermal phenomenon has two main effects, the first is damping, due to internal friction, and the second is softening, due to Young's modulus-temperature relationship. In this research work, some theoretical and experimental reported results are used to make a proper model, including thermal phenomena. Two Lorentzian functions are used to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, considering capacitor... 

    Investigation of the gas barrier properties of PP/ciay nanocomposite films with EVA as a compatibiliser prepared by the melt intercalation method

    , Article Polymer - Plastics Technology and Engineering ; Volume 49, Issue 10 , 2010 , Pages 991-995 ; 03602559 (ISSN) Shafiee, M ; Ahmad Ramazani, S. A ; Danaei, M ; Sharif University of Technology
    2010
    Abstract
    In this research, polypropylene (PP) nanocomposite films were prepared by melt intercalation method and their properties have been evaluated. To facilitate the formation of either intercalated or exfoliated nanocomposites, ethylene vinyl acetate copolymer (EVA) was used as a compatibiliser. Morphology of composites was determined by X-ray Diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM analyses confirmed that increasing of EVA content leads to achievement of intercalated nanocomposites. Furthermore, differential scanning calorimetry (DSC) measurement indicated a decrease in crystallinity, melting point and crystallization temperature. Also, permeability tests showed... 

    A novel nonlinear constitutive relation for graphene and its consequence for developing closed-form expressions for Young's modulus and critical buckling strain of single-walled carbon nanotubes

    , Article Acta Mechanica ; Volume 222, Issue 1-2 , 2011 , Pages 91-101 ; 00015970 (ISSN) Shodja, H. M ; Delfani, M. R ; Sharif University of Technology
    2011
    Abstract
    Carbon nanotubes (CNTs) are viewed as rolled graphene. Thus, an appropriate formulation describing the behavior of CNTs must contain the key information about both their initial configuration as graphene and final configuration as CNT.On this note, to date, somemodels, in particular based on the Cauchy- Born rule, for the description of CNTs behavior exist. A simplifying assumption in some of these models is that the length and perimeter of the CNT equal the corresponding dimensions of the unrolled initial configuration, thus neglecting the induced hoop and longitudinal strains. On the other hand, the present work offers a purely nonlinear continuum model suitable for the description of the... 

    Incorporating multiscale micromechanical approach into PLSNs with different intercalated morphologies

    , Article Journal of Applied Polymer Science ; Volume 119, Issue 6 , September , 2011 , Pages 3347-3359 ; 00218995 (ISSN) Yazdi, A. Z ; Bagheri, R ; Kazeminezhad, M ; Heidarian, D ; Sharif University of Technology
    2011
    Abstract
    The objective of the present study is to predict Young's modulus of polymer-layered silicate nanocomposites (PLSNs) containing fully intercalated structures. The particular contribution of this article is to consider the changes in structural parameters of different intercalated morphologies in vicinity of each other. These parameters include aspect ratio of intercalated stacks, number of silicate layers per stack, d-spacing between the layers, modulus of the gallery phase, and volume fraction of each intercalated morphology. To do this, the effective particle concept has been employed and combined with the Mori-Tanaka micromechanical model. It has been shown that the simultaneous effects of...