Loading...
Search for: young-s-modulus
0.005 seconds
Total 25 records

    Elastic properties of actin assemblies in different states of nucleotide binding

    , Article Cellular and Molecular Bioengineering ; Volume 5, Issue 1 , 2012 , Pages 1-13 ; 18655025 (ISSN) Ghodsi, H ; Kazemi, M. T ; Sharif University of Technology
    Abstract
    In this paper, the elastic properties of monomeric actin (G-actin) and the trimer nucleus (G-actin trimer) in different states of nucleotide binding are estimated using steered molecular dynamic (SMD) simulations. Three nucleotide binding states are considered: ADP- and ATP-bound actin and nucleotide-free actin assemblies. Our results show that nucleotide binding and the corresponding changes in structure have significant effects on the mechanical behaviors of actin assemblies. Simulations reveal that the deformation behavior of G-actin monomers is generally elastic up to engineering strains of 16 and 40% in the tension and shear tests, respectively. In addition, the G-actin trimers react... 

    Effects of geometrical and processing parameters on mechanical properties of auxetic polyurethane foams

    , Article SN Applied Sciences ; Volume 4, Issue 6 , 2022 ; 25233971 (ISSN) Abedini, N. H. Z ; Nourani, A ; Mohseni, M ; Hosseini, N ; Norouzi, S ; Bakhshayesh, P. R ; Sharif University of Technology
    Springer Nature  2022
    Abstract
    This study aimed to investigate the influence of processing parameters on the mechanical properties of auxetic polyurethane foams including Poisson’s ratio and Young’s modulus. 12 different processing scenarios were considered using the method of Plackett–Burman in the design of experiments with three replicates for each one. Eventually, 36 foams were prepared with different densities and initial thicknesses, heating temperatures and times, applied compression ratios, and the rest times between two heating steps. The microstructures of the conventional and auxetic samples were observed by scanning electron microscopy (SEM). All samples were subjected to tensile loading in one direction with... 

    Dynamic analysis of a functionally graded simply supported Euler-Bernoulli beam subjected to a moving oscillator

    , Article Acta Mechanica ; Volume 224, Issue 2 , 2013 , Pages 425-446 ; 00015970 (ISSN) Rajabi, K ; Kargarnovin, M. H ; Gharini, M ; Sharif University of Technology
    2013
    Abstract
    The dynamic behavior of a functionally graded (FG) simply supported Euler-Bernoulli beam subjected to a moving oscillator has been investigated in this paper. The Young's modulus and the mass density of the FG beam vary continuously in the thickness direction according to the power-law model. The system of equations of motion is derived by using Hamilton's principle. By employing Petrov-Galerkin method, the system of fourth-order partial differential equations of motion has been reduced to a system of second-order ordinary differential equations. The resulting equations are solved using Runge-Kutta numerical scheme. In this study, the effect of the various parameters such as power-law... 

    Application of a fuzzy analytical hierarchy process to the prediction of vibration during rock sawing

    , Article Mining Science and Technology ; Volume 21, Issue 5 , 2011 , Pages 611-619 ; 16745264 (ISSN) Mikaeil, R ; Ataei, M ; Yousefi, R ; Sharif University of Technology
    Abstract
    A new predictive model for evaluating the vibration of a sawing machine was developed using a new rock classification system. The predictors are machine parameters and a rock sawability index. The new rock classification system includes four major parameters of the rock: uniaxial compressive strength, abrasivity index, mean Moh's hardness, and Young's modulus. The FAHP approach was used when determining the weights of these parameters by six decision makers. Two groups of carbonate rocks were sawn using a fully-instrumented laboratory sawing rig at different feed rates and depths of cut. During the sawing trials system vibration was monitored as a measure of saw performance. Then, a new... 

    A novel nonlinear constitutive relation for graphene and its consequence for developing closed-form expressions for Young's modulus and critical buckling strain of single-walled carbon nanotubes

    , Article Acta Mechanica ; Volume 222, Issue 1-2 , 2011 , Pages 91-101 ; 00015970 (ISSN) Shodja, H. M ; Delfani, M. R ; Sharif University of Technology
    2011
    Abstract
    Carbon nanotubes (CNTs) are viewed as rolled graphene. Thus, an appropriate formulation describing the behavior of CNTs must contain the key information about both their initial configuration as graphene and final configuration as CNT.On this note, to date, somemodels, in particular based on the Cauchy- Born rule, for the description of CNTs behavior exist. A simplifying assumption in some of these models is that the length and perimeter of the CNT equal the corresponding dimensions of the unrolled initial configuration, thus neglecting the induced hoop and longitudinal strains. On the other hand, the present work offers a purely nonlinear continuum model suitable for the description of the...