Loading...
Search for: zeolites
0.01 seconds
Total 113 records

    The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction

    , Article Catalysis Communications ; Volume 10, Issue 12 , 2009 , Pages 1582-1585 ; 15667367 (ISSN) Firoozi, M ; Baghalha, M ; Asadi, M ; Sharif University of Technology
    2009
    Abstract
    The effect of particle size on the catalytic activity of H-ZSM-5 zeolite in the methanol to propylene (MTP) reaction was investigated in a fixed-bed flow reactor under the operating conditions of T = 460 °C, P = 1 atm, and WHSV = 1 h-1. Nano and micro size H-ZSM-5 were prepared by reflux and hydrothermal crystallization methods, respectively. The nano and micro H-ZSM-5 were characterized using XRD, NH3-TPD, BET area, SEM and ICP-AES analytical techniques. Nano size H-ZSM-5 showed higher activity and stability compared to the micro size H-ZSM-5. Nano H-ZSM-5 was also found to have higher selectivity to propylene than the micro size H-ZSM-5. © 2009 Elsevier B.V. All rights reserved  

    The effect of acid treatment and calcination on the modification of zeolite X in diesel fuel hydrodesulphurization

    , Article Canadian Journal of Chemical Engineering ; Volume 100, Issue 11 , 2022 , Pages 3357-3366 ; 00084034 (ISSN) Karami, H ; Kazemeini, M ; Soltanali, S ; Rashidzadeh, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Faujasite (X, Y) zeolites are considered the main and important catalysts in hydrorefining processes. In order to obtain zeolites with higher acidity and volume of mesopores, post-synthesis modification, dealumination by different pickling techniques (using ethylenediamine tetraacetic acid [EDTA] chelating agent), and thermal treatment (calcination) were employed. The dealumination process led to the removal of the aluminum atoms from the zeolite structure and a rise in acidity while maintaining the zeolite crystalline lattice. X-ray diffraction (XRD), atomic absorption spectrometry (AAS), Fourier-transform infrared (FT-IR), field-emission scanning electron microscopy (FE-SEM),... 

    Synthesis of nano particles of LTA zeolite by means of microemulsion technique

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 30, Issue 2 , 2011 , Pages 1-8 ; 10219986 (ISSN) Esmaeili, N ; Kazemian, H ; Bastani, D ; Sharif University of Technology
    2011
    Abstract
    This mini review article, intends to provide the essential information about microemulsion technique as a reliable approach toward the synthesis of zeolitic nano crystallites. The strategy discussed here provides a unique, effective, and potentially general methodology to the preparation of uniform and high purity nano crystallites of template-free zeolitic materials including LTA, faujasite type and other zeolitic-like materials (i.e. zeotype materials). Microemulsion is a reliable approach for controlled synthesis of uniform nano sized zeolitic particulates. On the other hand, the microwave assisted microemulsion technique has the advantages of short reaction time, producing smaller and... 

    Synthesis of Na-A and faujasitic zeolites from high silicon fly ash

    , Article Materials Research Bulletin ; Volume 44, Issue 4 , 2009 , Pages 913-917 ; 00255408 (ISSN) Fotovat, F ; Kazemian, H ; Kazemeini, M ; Sharif University of Technology
    2009
    Abstract
    High silicon fly ash (HSFA) utilized as a source of silicon in synthesizing of Na-A, -X and -Y zeolites through alkali fusion followed by hydrothermal treatment at 100 °C for 12 h. Various types of zeolites with different degrees of purity were prepared by changing Si/Al ratio of the reaction mixture from 1.6 to 3.0. In addition, exact boundaries of this ratio for synthesis of each zeolite type were determined. Furthermore, the effect of NaOH amount utilized in alkaline fusion step on crystalinity of samples investigated. The synthesized zeolites were characterized using various techniques including; XRD, TGA, FTIR, SEM and BET. The ion-exchange behaviors of zeolitic samples tested with... 

    Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal

    , Article Chemical Engineering Journal ; Volume 326 , 2017 , Pages 1145-1158 ; 13858947 (ISSN) Abdi, J ; Vossoughi, M ; Mahmoodi, N. M ; Alemzadeh, I ; Sharif University of Technology
    Abstract
    In this study, zeolitic imidazolate framework (ZIF-8) as a metal-organic framework (MOF) and its hybrid nanocomposites based on graphene oxide (GO) and carbon nanotubes (CNTs) were synthesized by facile method at an ambient temperature. The sufficiency of GO and CNT substrates as the main components of the composites to grow nanoscale MOFs and increase dispersive forces were investigated. The characteristics of the MOF and hybrid nanocomposites were studied using FTIR, SEM, XRD, BET and TGA techniques. The prepared nanomaterials applied as adsorbents to remove malachite green (MG) as a cationic dye from colored wastewater. The removal rates of the hybrid nanocomposites were greater than that... 

    Synthesis of ethyl cellulose/aluminosilicate zeolite nanofibrous membranes for oil–water separation and oil absorption

    , Article Cellulose ; Volume 26, Issue 18 , 2019 , Pages 9787-9801 ; 09690239 (ISSN) Koushkbaghi, S ; Jamshidifard, S ; ZabihiSahebi, A ; Abouchenari, A ; Darabi, M ; Irani, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    ZSM-5 (Seolite Sconoy Mobil) aluminosilicate zeolites synthesized by the hydrothermal method were incorporated into the hydrophobic ethyl cellulose (EC) nanofibrous membrane. The performance of synthesized nanofibers was investigated for a gravity driven oil–water separation. The synthesized ZSM-5 nanozeolites and EC/ZSM-5 composite nanofibers were characterized using XRD, FESEM, XPS, FTIR and AFM analysis. The permeability of EC/ZSM-5 5 wt% for oil in water mixture was in order of n-hexane (5170 ± 60 L/m2 h) > n-heptane (4600 ± 50 L/m2 h) > cyclohexane (4350 ± 35 L/m2 h) > pump oil (3780 ± 28 L/m2 h) > lubricating oil (3200 ± 25 L/m2 h) > motor oil (2980 ± 20 L/m2 h) with a separation... 

    Synthesis of dimethyl ether over modified H-mordenite zeolites and bifunctional catalysts composed of Cu/ZnO/ZrO2 and modified H-mordenite zeolite in slurry phase

    , Article Catalysis Letters ; Volume 129, Issue 1-2 , 2009 , Pages 111-118 ; 1011372X (ISSN) Khandan, N ; Kazemeini, M ; Aghaziarati, M ; Sharif University of Technology
    2009
    Abstract
    Synthesis of dimethyl ether (DME) via methanol dehydration were investigated over various catalysts, and via direct CO hydrogenation over hybrid catalysts composed of Al-modified H-Mordenite zeolite and Cu/ZnO/ZrO 2. H-Mordenite zeolite exhibited the highest activity in dehydration of methanol. However, its selectivity toward dimethyl ether was rather low. For this reason, the H-Mordenite was modified. Modification of zeolites was performed by wet impregnation method and considered catalysts were characterized by AAS, XRD and NH3-TPD analyses. Results of catalytic tests indicated that H-Mordenite modified with 8 wt% aluminum oxide was the best catalyst for synthesis of dimethyl ether from... 

    Synthesis and characterization of NaY zeolite-encapsulated Mn-hydrazone Schiff base: An efficient and reusable catalyst for oxidation of olefins

    , Article Journal of Coordination Chemistry ; Volume 65, Issue 22 , Aug , 2012 , Pages 4054-4066 ; 00958972 (ISSN) Bagherzadeh, M ; Zare, M ; Sharif University of Technology
    2012
    Abstract
    The Mn-hydrazone Schiff base has been prepared, characterized, and encapsulated into NaY to prepare a new heterogeneous catalyst. Elemental analysis, UV-Vis, infrared spectroscopic analysis, diffuse reflectance spectroscopy, thermal analysis, small angle X-ray diffraction, and N2 sorption indicate the presence of Mn-hydrazone Schiff base within the nanocavity pores of zeolite-Y. The catalysts showed excellent catalytic efficiency in epoxidation with various olefinic compounds including cyclooctene, using tert-BuOOH as oxidant. Cyclooctene showed high conversion (97%) as well as epoxide selectivity (89%) with tert-BuOOH. Moreover, the encapsulated complex showed good recoverability without... 

    Synergistic Wound Healing by Novel Ag@ZIF-8 Nanostructures

    , Article International Journal of Pharmaceutics ; Volume 629 , 2022 ; 03785173 (ISSN) Barjasteh, M ; Mohsen Dehnavi, S ; Ahmadi Seyedkhani, S ; Yahya Rahnamaee, S ; Golizadeh, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, novel zeolitic imidazolate framework-8 (ZIF-8) functionalized with Ag (Ag@ZIF-8) nanoparticles were synthesized through a green, facile and environmental-friendly process for wound dressing applications. X-ray diffraction revealed that the ZIF-8 and Ag@ZIF-8 were successfully synthesized by green solvents at ambient temperature. Field-emission scanning electron microscopy indicated a homogeneous porous blend of ∼30 nm chitosan/bacterial cellulose (CS/BC) nanofibers embedded with ∼80–110 nm nanoparticles of the ZIF-8 and Ag@ZIF-8. Transmission electron microscopy revealed the Ag@ZIF-8 nanostructures consist of ZIF-8 cores that are covered by 5–20 nm Ag nanoparticles. MTT assay... 

    Study of temperature and velocity distribution of rarefied gas flow in micro-nano channels

    , Article Proceedings of the ASME Fluids Engineering Division Summer Conference 2009, FEDSM2009, 2 August 2009 through 6 August 2009, Vail, CO ; Volume 1, Issue PART B , 2009 , Pages 1045-1050 ; 9780791843727 (ISBN) Ghezel Sofloo, H ; Shams, A ; Ebrahimi, R ; Sharif University of Technology
    Abstract
    This paper deals with simulation of transport phenomena in micro and nano pores. The number of cavities and the cavity radius were estimated by using Henry's law for adsorption of Argon onto ZSM-5 and NaX zeolites. This work showed both of zeolites have pores with average size less than 1 nm. Then with using micro- nano channel assumption instead of micro-nano pores, gas flow and heat transfer were investigated. Subsonic nonideal gas flow and heat transfer for different Knudsen number are investigated numerically using the Direct Simulation Monte Carlo method modified with a consistent Boltzamnn algorithm. The collision rate is also modified based on the Enskog theory for dense gas. It is... 

    Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane

    , Article Journal of Membrane Science ; Vol. 470, issue , 2014 , pp. 159-165 ; ISSN: 03767388 Maghsoudi, H ; Soltanieh, M ; Sharif University of Technology
    Abstract
    A high silica CHA-type membrane was synthesized by the in-situ crystallization method on a disk like α-alumina porous support to separate both acid (H2S, CO2) gases from methane. The membrane showed a permeance of 3.39×10-8mol/m2sPa for pure CO2with CO2/CH4 ideal selectivity of 21.6 at 303K and 100kPa pressure difference across the membrane. The membrane was also tested with N2 and O2 pure gases indicating a small O2/N2 selectivity of 1.2-1.4, which shows that this type of membrane is not suitable for O2/N2 separation. The membrane performance was also analyzed by binary (CO2-CH4) and ternary (H2S-CO2-CH4) gas mixtures, with compositions near the real sour natural gas (CO2: 2.13mol%, H2S:... 

    Removal of toxic heavy metal ions from waste water by functionalized magnetic core–zeolitic shell nanocomposites as adsorbents

    , Article Environmental Science and Pollution Research ; Volume 20, Issue 6 , June , 2013 , pp. 3900-3909 ; 1614-7499 Padervand, M. (Mohsen) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    Abstract
    Functionalized magnetic core–zeolitic shell nanocomposites were prepared via hydrothermal and precipitation methods. The products were characterized by vibrating sample magnetometer, X-ray powder diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption–desorption isotherms, and transmission electron microscopy analysis. The growth of mordenite nanocrystals on the outer surface of silica-coated magnetic nanoparticles at the presence of organic templates was well approved. The removal performance and the selectivity of mixed metal ions (Pb2+ and Cd2+) in aqueous solution were investigated via the sorption process. The batch method was employed to study the sorption kinetic,... 

    Removal of toxic heavy metal ions from waste water by functionalized magnetic core-zeolitic shell nanocomposites as adsorbents

    , Article Environmental Science and Pollution Research ; Volume 20, Issue 6 , 2013 , Pages 3900-3909 ; 09441344 (ISSN) Padervand, M ; Gholami, M. R ; Sharif University of Technology
    2013
    Abstract
    Functionalized magnetic core-zeolitic shell nanocomposites were prepared via hydrothermal and precipitation methods. The products were characterized by vibrating sample magnetometer, X-ray powder diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption-desorption isotherms, and transmission electron microscopy analysis. The growth of mordenite nanocrystals on the outer surface of silica-coated magnetic nanoparticles at the presence of organic templates was well approved. The removal performance and the selectivity of mixed metal ions (Pb2+ and Cd2+) in aqueous solution were investigated via the sorption process. The batch method was employed to study the sorption kinetic,... 

    Removal of heavy metals from aqueous solution using platinum nanopartcles/Zeolite-4A

    , Article Journal of Environmental Health Science and Engineering ; Vol. 12, issue. 1 , 2014 ; ISSN: 2052336X Mehdizadeh, S ; Sadjadi, S ; Ahmadi, S. J ; Outokesh, M ; Sharif University of Technology
    Abstract
    The effects of varying operating conditions on metals removal from aqueous solution using a novel platinum nanopartcles/Zeolite-4A adsorbent are reported in this paper. Characterization of the adsorbent showed successful production of platinum nanopartcles on Zeolite-4A using 3 Wt% platinum. The effects of operation conditions on metals removal using this adsorbent were investigated. The optimal metals adsorption was observed at pH 7, 0.1 g/10 mL dosage and 30 min contact time. Sorption data have been interpreted in terms of Langmuir and Freundlich isotherms  

    Removal of BTX compounds from wastewaters using template free MFI zeolitic membrane

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 29, Issue 4 , 2010 , Pages 91-98 ; 10219986 (ISSN) Torkaman, R ; Kazemian, H ; Soltanieh, M ; Sharif University of Technology
    2010
    Abstract
    MFI zeolite membranes were prepared on porous α-alumina substrates, using secondary growth of nano-seeded layers. The resulting membranes were characterized by means of Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD), and pervaporation performance tests for separation of Benzene, Toluene and Xylene (BTX) mixture from contaminated water. The morphology, thickness, homogeneity, crystal preferential orientation and permeation properties of these membranes have been studied in relation to the seed layers. Successful separation of BTX mixture from water was performed by using the manufactured MFI zeolite membrane. The influence of temperature, feed concentration on the membrane... 

    Removal of an organic pollutant from waste water by photocatalytic behavior of AgX/TiO2 loaded on mordenite nanocrystals

    , Article Research on Chemical Intermediates ; Volume 38, Issue 8 , 2012 , Pages 1975-1985 ; 09226168 (ISSN) Padervand, M ; Salari, H ; Ahmadvand, S ; Gholami, M. R ; Sharif University of Technology
    Springer  2012
    Abstract
    Mordenite (MOR) nanocrystals were synthesized using the hydrothermal method. Sol-gel and deposition methods were utilized to modify the zeolite surface with TiO2 and then AgBr or AgCl particles. Photocatalysts were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET), and scanning electron microscopy techniques. Activity was evaluated by photodegradation of Acid Blue 92 as an azo dye. The effect of silver halide deposition on the photocatalytic behavior of the prepared nanocomposites was studied under both ultraviolet (UV) and visible light, and the results were compared. The results showed that AgCl/TiO2/MOR was more active under UV, while with visible source,... 

    Rapid, efficient and selective reduction of aromatic nitro compounds with hydrazine hydrate in the presence of the plain and supported platinum nanoparticles as catalysts

    , Article Journal of the Iranian Chemical Society ; Vol. 11, issue. 6 , 2014 , pp. 1587-1592 ; ISSN: 1735207X Mehdizadeh, S ; Ahmadi, S. J ; Sadjadi, S ; Outokesh, M ; Sharif University of Technology
    Abstract
    The current study aimed at application of the plain and supported platinum nanoparticles as a heterogenous catalyst for the reduction of aromatic nitro compounds. Monodispersed platinum nanoparticles were synthesized by reduction of H2PtCl6 by ethanol in the presence of polyvinyl pyrrolidone as a stabilizer, and then were immobilized on four types of zeolites. The obtained catalyst granules were characterized by X-ray diffractometry and transmission electron microscopy. The study then focused on elaboration of the catalytic activity of the nano catalysts under different operational conditions. It was found that reaction is adequately rapid at ambient temperature, and by utilizing a... 

    Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review

    , Article Journal of Industrial and Engineering Chemistry ; Volume 19, Issue 2 , 2013 , Pages 375-393 ; 1226086X (ISSN) Bastani, D ; Esmaeili, N ; Asadollahi, M ; Sharif University of Technology
    2013
    Abstract
    Polymeric membrane technology has received extensive attention in the field of gas separation, recently. However, the tradeoff between permeability and selectivity is one of the biggest problems faced by pure polymer membranes, which greatly limits their further application in the chemical and petrochemical industries. To enhance gas separation performances, recent works have focused on improving polymeric membranes selectivity and permeability by fabricating mixed matrix membranes (MMMs). Inorganic zeolite materials distributed in the organic polymer matrix enhance the separation performance of the membranes well beyond the intrinsic properties of the polymer matrix. This concept combines... 

    Permeation of single gases through TEG liquid membranes modified by Na-Y nano-zeolite particles

    , Article Separation and Purification Technology ; Volume 76, Issue 2 , 2010 , Pages 120-125 ; 13835866 (ISSN) Asadollahi, M ; Bastani, D ; Kazemian, H ; Sharif University of Technology
    2010
    Abstract
    In this research, a triethylene glycol (TEG)/nano-zeolite Na-Y liquid membrane was developed in order to investigate the effect of zeolite nanoparticles on separation performance of a liquid membrane. To do this, a high yield nano-zeolite Na-Y was synthesized using mid-synthesis addition method. The synthesized samples were characterized by XRD, FT-IR, and SEM (EDX) instrumental techniques. A supported liquid membrane was prepared by impregnating a porous hydrophilic PVDF support with TEG and nano-zeolite Na-Y. The permeation tests of single gas components of O2, N2 and CO2 were carried out at pressure differences of 0.8 and 1.8 bar. The permeances of the single gases were found to be: CO2 >... 

    Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders

    , Article Powder Technology ; Volume 203, Issue 2 , November , 2010 , Pages 389-396 ; 00325910 (ISSN) Charkhi, A ; Kazemian, H ; Kazemeini, M ; Sharif University of Technology
    2010
    Abstract
    Nano powder of natural clinoptilolite zeolite was mechanically prepared by using a planetary ball mill. Statistical experimental design was applied to optimize wet and dry milling of clinoptilolite zeolite. To determine appropriate milling conditions with respect to the final product crystallinity, particle size and distribution, different milling parameters such as dry and wet milling durations, rotational speed, balls to powder ratio and water to powder ratio (for the wet milling) were investigated. Laser beam scattering technique, scanning electron microscopy and X-ray diffraction analyses were carried out to characterize samples. Results showed that larger than 1. mm particle size of...