Loading...
Search for: aashuri--hossein
0.125 seconds

    Joining of 304 Stainless Steel to Semi Solid A356 Aluminum Alloy and Investigation of Interfacial Bond

    , M.Sc. Thesis Sharif University of Technology Pakdaman, Pourang (Author) ; Aashuri, Hossein (Supervisor)
    Abstract
    A method of joining dissimilar metals in the semi solid state is presented. By this method bonding of Stainless steel and semisolid aluminum alloy took place in this research. By usage of thermomechanical treatment, dendritic microstructure of cast aluminum alloy changed to globular structure. The experimental process of bonding occurred at semisolid temperature stage of aluminum alloy in a predesigned mold by using a pressure equipment. The relationship between interfacial shear strength and solid fraction of aluminum alloy, bonding pressure and time of keeping pressure were studied by method of orthogonal experiment. By the usage of Taguchi method in designing experiments, plurality of... 

    Fabrication of AZ91/ SiCp Composite In Semi-Solid State By Using Electromagnetic Stirring, Microstructures And Mechanical Properties

    , M.Sc. Thesis Sharif University of Technology Ghaderi, Mohammad (Author) ; Aashuri, Hossein (Supervisor)
    Abstract
    In this study AZ91 alloy reinforced by SiC particles processed by semi-solid casting was produced by using electromagnetic stirrer. In order to prevent ignition and oxidation of the melted AZ91 alloy 1 Wt.% of calcium was added to the melt. In order to surface oxidation of SiC particles, they were heat treated in 1100 ᵒC for 2 hours before adding to the melt. Different methods of adding SiC particles to the melt were investigated. Particle distribution in the matrix was studied qualitatively and quantitatively using microscopic images and image analysis, respectively. It is shown that higher amount of reinforcement particle need to be added to the melt in multi-steps. Frequency versus... 

    Semisolid Microstructure Evaluation of M2 High Speed Steel by Cooling Slope and Rolled - Annealed

    , M.Sc. Thesis Sharif University of Technology Amin Ahmadi, Behnam (Author) ; Aashuri, Hossein (Supervisor)
    Abstract
    In this research the effects of cooling slope angle and the temperature of molten steel on globular structure after holding the samples at semisolid state have been investigated. The globular structure of high speed steel in the form of rolled - annealed and as cast condition, has been investigated in the semisolid state. The results showed that the grain sizes of cooling slope samples were lower than the rolled- annealed samples after holding at semisolid temperature. On the other hand, rolled-annealed solid grains had better roundness compared with cooling slope samples. Dissolution of carbides in the austenite phase at grain boundary leads to formation of globular particles in the... 

    Semi-Solid Forming of AZ91 Magnesium Alloy by using Electromagnetic Stirring

    , M.Sc. Thesis Sharif University of Technology Farzam Mehr, Navid (Author) ; Aashuri, Hossein (Supervisor)
    Abstract
    In the last decade, magnesium alloy has been developed owing to it’s low density, high specific strength, good castability and damping property. AZ91 alloy is proved to be the most common and most important magnesium casting alloy. It is shown that, rheocasting process is a proper way which increases the mechanical properties of the products. Since 28 years, so many new methods for preparing Semi-Solid alloy slurry and rheoforming process have been suggested. Electromagnetic Stirring ( EMS ) method was used for making globular structures. In this research, the semi-solid slurry of AZ91 magnesium alloy was prepared by electromagnetic stirrer under different conditions of stirring current and... 

    , Ph.D. Dissertation Sharif University of Technology (Author) ; Aashuri, Hossein (Supervisor) ; Simchi, Abdolreza (Co-Advisor)
    Abstract
    We demonstrated efficient direct electron transfer from the enzyme glucose oxidase to vertically aligned gold nanorods with a diameter of ~160 nm and a length of ~2 μm that are covalently linkage to a 3-dimensional network of reduced graphene oxide nanosheets. The assembly can be prepared by a 2-step electrochemical procedure. This hybrid structure holds the enzyme in a favorable position while retaining its functionality that ultimately provides enhanced performance for enzymatic sensing of glucose without utilizing mediators. The nanorod assembly was applied to the voltammetric detection of glucose. Figures of merit include an electrochemical sensitivity of 12 µA⋅mM-1⋅cm-2 (obtained from... 

    Production of Globular Structure of Al A356, Using Both Electromagnetic Stirrer and Gas induced Semi Solid (GISS) Process

    , M.Sc. Thesis Sharif University of Technology yekani, Farnoush alsadaat (Author) ; Aashuri, Hossein (Supervisor)
    Abstract
    Production of semi solid slurry and creating the globular alloy structure is possible in the ways of Electromagnetic stirring and Gas induced semi solid, which are used widely in industrial scale. Because of the weak magnetic field in the middle part of stirrer, this part is being emptied of melt. As a result, The porous graphite cone is used in this part in order to inject the gas bubbles.In this research, the semi solid A356 Aluminum alloy, is produced under different durations and stirring flux using a three phase Electromagnetic stirrer and injection of the Argon gas. Consequently the slurry was transferred to a mold and compacted by a drop weight. By investigating and analyzing the... 

    Investigating the Effects of Ca Additions and Thermomechanical Processing on the Microstructure, Mechanical Properties and Degradation Behavior of Mg-Y Based Alloys

    , M.Sc. Thesis Sharif University of Technology Jorati, Sina (Author) ; Alizadeh, Reza (Supervisor) ; Aashuri, Hossein (Supervisor)
    Abstract
    In this study, the effects of calcium addition and T4 heat treatment at 450°C for 36 hours on the microstructure, mechanical properties, and corrosion resistance of the Mg-2.5Y alloy were comprehensively investigated. The studied alloys included the base Mg-2.5Y alloy and the Mg-2.5Y-0.2Ca alloy, which were prepared through casting. Microstructural analysis using optical microscopy, scanning electron microscopy, and X-ray diffraction revealed that the addition of 0.2 wt% calcium significantly reduced the grain size from 732±34 µm in the base alloy to 475±12 µm. After heat treatment, the dissolution of dendritic branches and secondary phases (Mg24Y5 and Mg2Ca) resulted in finer, more equiaxed... 

    An Investigation into the Microstructure and Mechanical Properties of Rheoforged A356 Alloy After Severe Plastic Deformation

    , M.Sc. Thesis Sharif University of Technology Dodangeh, Abbas (Author) ; Kazeminezhad, Mohsen (Supervisor) ; Aashuri, Hossein (Supervisor)
    Abstract
    Several studies are already on severe plastic deformation of wrought and cast aluminum alloys. Among these studies, no evidence of applying severe plastic deformation on the structure of rheocast or rheoforgedaluminum alloy can be found. So, in this research A356 alloy with globular structure was achieved using electromagnetic stirring and rheoforging. The optimum condition of globular structure with high sphericity was achievedafter holding the produced structure in semi-solid state for 10 min. Then, the effect of severe plastic deformation on mechanical and microstructural properties of this alloy and cast alloy was studied. The results show that with applying 3 passes of multidirectional... 

    Microstructure and Wear Properties of WC/CuZnNi Compsite Surface Coating

    , M.Sc. Thesis Sharif University of Technology Rafie Azad, Mehran (Author) ; Kokabi, Amir Hossein (Supervisor) ; Aashuri, Hossin (Supervisor)
    Abstract
    The microstructure and wear performance of WC/Cu-Zn-Ni composite surface coating has been investigated using a combination of microscopy, hardness, and wear testing. The oxidation behavior of tungsten carbide hard metal in the temperature range between 600 and 900 ◦C was also researched. The oxidation mass gain of WC correlated almost directly with temperature as well as time. The particle of hard metal is surrounded by the α Cu+β Zn phase in the surface coating. The size of hard metal is almost unchanged from its original one. There exists an inter-diffusion zone at the interface of the hard metals and Cu-based matrix. The wear volume of the WC/Cu-Zn-Ni composite surface coatings increased... 

    Study and Controlling Microstructure of Rapidly Solidified Multiprinciple Fe, Co and Ni Alloy

    , M.Sc. Thesis Sharif University of Technology Ghiasi Afjeh, Mohammad Bagher (Author) ; Tavakoli, Rouhollah (Supervisor) ; Aashuri, Hossein (Supervisor)
    Abstract
    Multi-principle alloys exhibit microstructure and different properties from most conventional alloys due to their high entropy, very slow diffusion and distorted crystal structure properties. Heat treatment, thermomechanical treatment, addition of alloying elements and control of solidification process are common methods of microstructure modification and property improvement. Among the solidification parameters, undercooling and cooling rate is one of the most suitable methods to obtain semi-stable and fine-grained phases. These parameters have been less studied in multi-principle alloys, while in the case of ferrous and cobalt alloys has been much studied. The main purpose of this type of... 

    Study of Structural and Mechanical Properties of Zr-, Ti- and La-based bulk Metallic Glasses

    , Ph.D. Dissertation Sharif University of Technology Asadi Khanouki, Mohammad Taghi (Author) ; Aashuri, Hossein (Supervisor) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    Bulk metallic glasses (BMGs), in contrast to conventional crystalline materials, are defined as metals with an amorphous and disordered atomic-scale structure. Due to the absence of dislocations and grain boundaries, BMGs have considerably unique mechanical properties such as high strength and elastic strain, high wear resistance and desirable corrosion resistance. However, they generally suffer from poor plasticity caused by an inhomogeneous deformation which leads to catastrophic failure by localization of strain into narrow regions, known as shear bands. This factor has extremely restricted their application as advanced structural materials. Furthermore, the recently discovered phenomenon... 

    Globular structure of ZA27 alloy by thermomechanical and semi-solid treatment

    , Article Materials Science and Engineering A ; Volume 391, Issue 1-2 , 2005 , Pages 77-85 ; 09215093 (ISSN) Aashuri, H ; Sharif University of Technology
    2005
    Abstract
    The dendritic structure of a cast ZA27 alloy can be transformed into a globular structure, if it is cold worked prior to being held in a semi-solid condition. The globular or the equiaxed particles are surrounded by the lower melting matrix. The dendritic structure was swaged and recrystallised prior to holding in a semi-solid state in this investigation. The semi-solid holding of the alloy at temperatures above and below that of peritectic reaction was carried out for various lengths of time. It was shown that the liquid fraction is decreased to below the peritectic temperature which leads to a reduction of lubrication between the solid globules and an increasing deformation force. Holding... 

    Molecular dynamics simulation of melting, solidification and remelting processes of aluminum [electronic resource]

    , Article Iranian Journal of Science and Technology ( IJST): Transactions of Mechanical Engineering ; 2012, Vol.36, No. M1, P.13-23 Solhjoo, S ; Simchi, A. (Abdolreza) ; Aashuri, H ; Sharif University of Technology
    Abstract
    A molecular dynamics simulation study has been performed to investigate the solidification and remelting of aluminum using Sutton - Chen many body potential. Different numbers of atoms from 108 to 2048 atoms were considered to find an adequate size for the system. Three different cooling and heating rates, i.e. 1 0 12 K/s, 10 13 K/s and 10 14 K/s, were used. The structure of the system was examined using radial distribution function. The melting and crystallization temperatures of aluminum were evaluated by calculating the variation of heat capacity during the phase t ransformation. Additionally, Wendt – Abraham parameters were calculated to determine the glass transition temperature. It is... 

    Effects of cold severe plastic deformation and heating on dendritic and non-dendritic structures: A356 alloy

    , Article International Journal of Cast Metals Research ; Volume 27, Issue 5 , 1 October , 2014 , Pages 312-320 ; ISSN: 13640461 Dodangeh, A ; Kazeminezhad, M ; Aashuri, H ; Sharif University of Technology
    2014
    Abstract
    In this research the effects of cold deformation and heating to the semi-solid temperature on microstructure and mechanical properties of cast dendritic and non-dendritic structures of A356 alloy were investigated. To produce the non-dendritic samples, the semi-solid slurry was obtained by electromagnetic stirring and rheoforged and then the samples were heated to semi-solid temperature. In order to impose the deformation to the dendritic and non-dendritic samples, multidirectional forging process was used. Non-dendritic samples were deformed with applying one to three passes of the multidirectional forging and then were kept at the semi-solid range of temperature again. Microstructural and... 

    Molecular dynamics simulation of melting, solidification and remelting processes of aluminum

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 36, Issue M1 , 2012 , Pages 13-23 ; 22286187 (ISSN) Solhjoo, S ; Simchi, A ; Aashuri, H ; Sharif University of Technology
    2012
    Abstract
    A molecular dynamics simulation study has been performed to investigate the solidification and remelting of aluminum using Sutton-Chen many body potential. Different numbers of atoms from 108 to 2048 atoms were considered to find an adequate size for the system. Three different cooling and heating rates, i.e. 10 12 K/s, 10 13 K/s and 10 14 K/s, were used. The structure of the system was examined using radial distribution function. The melting and crystallization temperatures of aluminum were evaluated by calculating the variation of heat capacity during the phase transformation. Additionally, Wendt-Abraham parameters were calculated to determine the glass transition temperature. It is shown... 

    Severe plastic deformation of rheoforged aluminum alloy A356

    , Article Materials Science and Engineering A ; Volume 558 , 2012 , Pages 371-376 ; 09215093 (ISSN) Dodangeh, A ; Kazeminezhad, M ; Aashuri, H ; Sharif University of Technology
    2012
    Abstract
    In this research, the electromagnetic stirring (EMS) process was used to produce semi-solid slurry with globular structure from cast A356 aluminum alloy. Then the slurry was forged in a die, which named rheoforging process. Utilizing multidirectional forging (MDF), the effect of severe plastic deformation on microstructure and mechanical properties of this alloy in dendritic and globular states was investigated. Shear punch, micro- and macro-hardness tests were used to study the mechanical properties of these samples. For metallographic examinations, the optical microscope equipped with the Clemex ® image analyzer software was used. Optimum globular structure of rheoforged specimens was... 

    Molecular dynamics study of structural formation in Cu50-Zr50 bulk metallic glass

    , Article Journal of Non-Crystalline Solids ; 2015 ; 00223093 (ISSN) Foroughi, A ; Tavakoli, R ; Aashuri, H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this work, the evolution of the local structure in Cu50-Zr50 bulk metallic glass during glass formation was studied by molecular dynamics simulation. The pair distribution function and Voronoi analysis were adopted to characterize local structures in this alloy. The stability of icosahedral clusters and the role of other local clusters in the formation of icosahedra were evaluated. It was found that the (0,2,8,2) polyhedron is not only the dominant cluster in this alloy, but also the most prone cluster to convert into an icosahedron in the course of cooling. Moreover, it acts as an intermediate state during the icosahedron formation. The onset of stability of icosahedra emerges at the... 

    Molecular dynamics study of structural formation in Cu50–Zr50 bulk metallic glass

    , Article Journal of Non-Crystalline Solids ; Volume 432 , 2016 , Pages 334-341 ; 00223093 (ISSN) Foroughi, A ; Tavakoli, R ; Aashuri, H ; Sharif University of Technology
    Elsevier B. V  2016
    Abstract
    In this work, the evolution of the local structure in Cu50–Zr50 bulk metallic glass during glass formation was studied by molecular dynamics simulation. The pair distribution function and Voronoi analysis were adopted to characterize local structures in this alloy. The stability of icosahedral clusters and the role of other local clusters in the formation of icosahedra were evaluated. It was found that the (0,2,8,2) polyhedron is not only the dominant cluster in this alloy, but also the most prone cluster to convert into an icosahedron in the course of cooling. Moreover, it acts as an intermediate state during the icosahedron formation. The onset of stability of icosahedra emerges at the... 

    Enzymatic biosensing by covalent conjugation of enzymes to 3D-networks of graphene nanosheets on arrays of vertically aligned gold nanorods: application to voltammetric glucose sensing

    , Article Microchimica Acta ; Volume 185, Issue 3 , 2018 ; 00263672 (ISSN) Mazaheri, M ; Simchi, A ; Aashuri, H ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    The authors demonstrate efficient direct electron transfer from the enzyme glucose oxidase to vertically aligned gold nanorods with a diameter of ~160 nm and a length of ~2 μm that are covalently linkage to a 3-dimensional network of reduced graphene oxide nanosheets. The assembly can be prepared by a 2-step electrochemical procedure. This hybrid structure holds the enzyme in a favorable position while retaining its functionality that ultimately provides enhanced performance for enzymatic sensing of glucose without utilizing mediators. The nanorod assembly was applied to the voltammetric detection of glucose. Figures of merit include an electrochemical sensitivity of 12 μA·mM−1·cm−2... 

    Microstructural investigation of semisolid aluminum a356 alloy prepared by the combination of electromagnetic stirring and gas induction

    , Article 15th International conference on Semi-Solid Processing of Alloys and Composites, S2P 2018, 22 October 2018 through 24 October 2018 ; Volume 285 SSP , 2019 , Pages 290-295 ; 16629779 (ISSN); 9783035713732 (ISBN) Nafari, N ; Yekani, F ; Aashuri, H ; Sharif University of Technology
    Trans Tech Publications Ltd  2019
    Abstract
    A three phase electromagnetic stirrer was used to agitate aluminum A356 slurry and a dry and oxygen free argon gas was introduced in to the slurry by a porous graphite core at a same time. The prepared semi-solid slurry was then transferred into a metallic mold and was compacted by a drop weight. Results demonstrated a favorable increase in shape factor, decrease in aspect ratio and average diameter size at different intensities of stirring. The intensity of stirring was changed by altering the current passed through the magnetic coil and also bubbling intensity via the porous graphite diffuser. Different time intervals for electromagnetic stirring and gas induction were applied. Agitating...