Loading...
Search for: abad--zahra
0.125 seconds

    Bioremediation of Polychlorinated Biphenyls Contaminated Soils (with Emphasis on 4-chlorobenzoic acid) by Slurry Systems

    , M.Sc. Thesis Sharif University of Technology Abad, Zahra (Author) ; Yaghmaei, Soheila (Supervisor) ; Ghobadi Nejad, Zahra (Co-Supervisor)
    Abstract
    Polychlorobiphenyl compounds are a class of persistent organic pollutants consisting of two biphenyl rings and chlorine substations. Polychlorobiphenyls do not dissolve in water, are very stable at high temperatures, and are considered a good conductor. Due to the mentioned properties in the 1930s and 1940s, these compounds were widely used in various industries such as power plants, Painting industry, Plastics industry, etc. After years of use, these substances have been found to be very dangerous to the health of living organisms and the environment due to their high resistance to decomposition and the ability to accumulate in adipose tissue. Today, although the production and use of these... 

    Scaling of macroscopic superpositions close to a quantum phase transition

    , Article Physical Review B - Condensed Matter and Materials Physics ; Volume 93, Issue 19 , 2016 ; 10980121 (ISSN) Abad, T ; Karimipour, V ; Sharif University of Technology
    American Physical Society  2016
    Abstract
    It is well known that in a quantum phase transition (QPT), entanglement remains short ranged [Osterloh et al., Nature (London) 416, 608 (2005)NATUAS0028-083610.1038/416608a]. We ask if there is a quantum property entailing the whole system which diverges near this point. Using the recently proposed measures of quantum macroscopicity, we show that near a quantum critical point, it is the effective size of macroscopic superposition between the two symmetry breaking states which grows to the scale of system size, and its derivative with respect to the coupling shows both singular behavior and scaling properties  

    Critical slowing down of multiatom entanglement by Rydberg blockade

    , Article Physical Review A ; Volume 98, Issue 2 , 2018 ; 24699926 (ISSN) Abad, T ; Mølmer, K ; Sharif University of Technology
    American Physical Society  2018
    Abstract
    Laser excitation pulses that lead to perfect adiabatic state transfer in an ensemble of three-level ladder atoms lead to highly entangled states of many atoms if their highest excited state is subject to Rydberg blockade. Solution of the Schrödinger equation shows that it is increasingly difficult to ensure the adiabatic evolution as the number of atoms increases. A diminishing energy gap, significant variations in collective observables, and increased work fluctuations link the critical slowing down of the adiabatic evolution with a quantum-phase-transition-like behavior of the system. © 2018 American Physical Society  

    Failure analysis of a gas turbine compressor in a thermal power plant

    , Article Journal of Failure Analysis and Prevention ; Volume 13, Issue 3 , 2013 , Pages 313-319 ; 15477029 (ISSN) Masoumi Khalil Abad, E ; Farrahi, G. H ; Masoumi Khalil Abad, M ; Zare, A. A ; Parsa, S ; Sharif University of Technology
    2013
    Abstract
    This study presents the results of failure analysis of a 28 MW gas turbine at the Rei electrical power plant. The gas turbine failed during the shutdown period and near its second natural frequency at 4200 rpm. Initial inspections revealed that the compressor disk of stage 15 was fractured, and all of the stationary and rotary blades of stages 14-18 of the compressor had been detached or broken from the dovetail region of the disks. The fracture roots were investigated by performing finite element modeling and fractography analysis. It was shown that a crack was initiated from the disk edge on its interface with the rotor shaft and was propagated under cyclic loading. As a result of the... 

    Macroscopic Superposition in Quantum Systems

    , Ph.D. Dissertation Sharif University of Technology Abad, Tahereh (Author) ; Karimipour, Vahid (Supervisor)
    Abstract
    Quantum mechanics provides a deep understanding of atoms and their interaction with light. As long as we consider only microscopic systems on the scale of an atomic radius, objections to quantum properties such as quantum superposition are nevertheless rare, mainly because of the overwhelming experimental evidence. When it comes to macroscopic systems, many things are not clear anymore. For example,everyday objects of macroscopic size do not exist in superposition of their different states. The reason is that a quantum system interacts with its environment locally,which destroys non-local quantum correlation within the system, larger objects interact with the environment more intensively and... 

    Power of quantum channels for creating quantum correlations

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 86, Issue 6 , 2012 ; 10502947 (ISSN) Abad, T ; Karimipour, V ; Memarzadeh, L ; Sharif University of Technology
    2012
    Abstract
    Local noise can produce quantum correlations on an initially classically correlated state, provided that it is not represented by a unital or semiclassical channel. We find the power of any given local channel for producing quantum correlations on an initially classically correlated state. We introduce a computable measure for quantifying the quantum correlations in quantum-classical states, which is based on the noncommutativity of ensemble states in one party of the composite system. Using this measure we show that the amount of quantum correlations produced is proportional to the classical correlations in the initial state. The power of an arbitrary channel for producing quantum... 

    Sequentially generated entanglement, macroscopicity, and squeezing in a spin chain

    , Article Physical Review A ; Volume 96, Issue 4 , 2017 ; 24699926 (ISSN) Abad, T ; Mølmer, K ; Karimipour, V ; Sharif University of Technology
    2017
    Abstract
    We study quantum states generated by a sequence of nearest neighbor bipartite entangling operations along a one-dimensional chain of spin qubits. After a single sweep of such a set of operations, the system is effectively described by a matrix product state (MPS) with the same virtual dimension as the spin qubits. We employ the explicit form of the MPS to calculate expectation values and two-site correlation functions of local observables, and we use the results to study fluctuations of collective observables. Through the so-called macroscopicity and the squeezing properties of the collective spin variables they witness the quantum correlations and multiparticle entanglement within the... 

    Mesoporous silica nanoparticles (MCM-41) coated PEGylated chitosan as a pH-Responsive nanocarrier for triggered release of erythromycin [electronic resource]

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2014, Volume 63, Issue 13, Pages 692-697 Pourjavadi, A. (Ali) ; Mazaheri Tehrani, Zahra ; Sharif University of Technology
    Abstract
    A pH-responsive drug delivery system based on core shell structure of mesoporous silica nanoparticle (MSN) and chitosan-PEG copolymer was prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and high-resolution transmission microscope (HR-TEM) techniques. In order to improve compatibility MSN and drug, mesoporous nanosilica was modified by 3-aminopropyl triethoxysilane. The release of erythromycin (a macrolide antibiotic) as a model drug was investigated in two pHs, 7.4 and 5.5  

    Comparative Study on Stability of Concrete Gravity Dams Using Rigid and Flexible Approach

    , M.Sc. Thesis Sharif University of Technology jalili Sadr Abad, Mohammad (Author) ; Ghaemian, Mohsen (Supervisor)
    Abstract
    One of most important type of dams are concrete gravity dams, This structures maintain their stability against the load from their weight. The study of stability of dams is very important issue because Iran is placed on a seismic zone and instability of constructed dams will cause many problems for us. There are two method in study of concrete gravity dams: in first method which is named rigid approach the body of dam consider as a rigid body and by equilibrium equations and traditional strength of material concepts the safety factors of stability and stresses are determined. In second method that is named flexible approach, we should prepare a finite element method from the dam, reservoir... 

    Using Nonlinear Effects of Light for Optical Signal Processing

    , M.Sc. Thesis Sharif University of Technology Shatery, Farshid (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Ultrafast signal processing in time-domain with high resolution and reconfigura-bility is a challenging task. This paper, for the first time, introduces a time-varying metasurface consisting of graphene microribbon array for implementing time-lens in the terahertz domain. Given that the surface conductivity of graphene is proportional to the Fermi energy level in the THz regime, it is possible to change the phase property of the incident electromagnetic pulse by changing the Fermi level while the Fermi level itself is a function of voltage. Upon this fact, a quadratic temporal phase modulator, namely time-lens has been realized. This phase modulation is applied to the impinging signal in the... 

    Theoretical and Computational Investigation of Quantum Plasmonic Properties of Nanocluster Dimers

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Erfan (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    In today's era, metal nanoparticles play an important role in technologies emerging from different sciences, such as chemistry, physics, optics, material science, due to their unique characteristics. In the development of nanooptics science, it can be said that metal nanoparticles play an important role. The ability of conductive electrons collective oscillation causes surface charge density fluctuations in nanoparticles, this phenomenon is known as surface plasmons. Surface plasmons are surprisingly coupled with light and cause the significant increase in the intensity of optical fields induced in nanoparticles. Therefore, with the presence of localized surface plasmons or plasmon... 

    Theoretical Investigation of Ab-initio MD Approach to Increase the Efficiency and Accuracy of VCD Spectrum Calculation

    , M.Sc. Thesis Sharif University of Technology Hadi, Hossein (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    Understanding of the Molecules is the main purpose of the chemistry. Ab-initio molecular dynamics (AIMD) as a branch of the computational chemistry, tries to give us a deep comprehension of the molecule, and its chemical, physical and optical activities. This comprehension, relies on the accuracy of quantum mechanics, in addition to the speed of the classical mechanics. The mixing of the quantum mechanics and the classical mechanics could simulate activities of the atoms in the time-domain, provided the mixing is done with precaution. This, in turn, helps us to forecast the response of a molecule in different situations, and also translating the macroscopic phenomena in a nanoscopic... 

    Investigation of Plasmonic Excitation in Carbonic Nanostructures Within Near-IR

    , M.Sc. Thesis Sharif University of Technology Madadi, Mahkam (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    To date, the plasmonic properties of many metallic and semi-conducting materials have been investigated and used in various industries. One of the plasmonic material categories that have always been considered is polycyclic aromatic hydrocarbon or PAH, whose plasmonic resonance energy depends on the charge state of the molecule. In this regard, it is easy to change the plasmonic resonance energy via changing the induced charge, which is a unique feature of the mentioned materials. In addition, plasmonic structures with excitations in the infrared region are able to enhance the vibration intensity of absorbed molecules by increasing the electric field around themselves. Therefore, they have... 

    Using Simulation-Optimization Approach for Fire Station Location and Vehicle Assignment Problem: a Case Study in Tehran, Iran

    , M.Sc. Thesis Sharif University of Technology Pirmohammadi, Ali (Author) ; Amini, Zahra (Supervisor)
    Abstract
    In this research, the problem of locating fire stations and allocating equipment has been studied and a simulation-optimization approach has been presented to solve the problem. The mathematical models of this research were developed based on the idea of the randomness of the covered demand and the maximum expected coverage model. In these models, the issue of non-availability of equipment to cover accidents, the random nature of accidents, various fire incidents and the equipment needed to cover them are considered. Two mathematical models with deterministic and non-deterministic approach with different scenarios for demand are proposed. The non-deterministic model is developed with the aim... 

    Introducing An Integrated Framework For Solving The Fleet Planning Problem Using A Simulation-Optimization Approach

    , M.Sc. Thesis Sharif University of Technology Sahebi, Armin (Author) ; Amini, Zahra (Supervisor)
    Abstract
    One of the main concerns of industrial companies’ managers is providing an efficient logistics system. To achieve an efficient logistics system, the fleet planning problem is studied by many researchers in recent years. This problem consists of multiple sub-problems at three levels: operational, tactical, and strategic. These sub-problems are closely related to each other and need to be studied and addressed in an integrated manner. In this research, an attempt is made to provide an integrated framework to solve the vehicle routing problem (operational), outsourcing problem (tactical), and fleet composition problem (strategic). These problems have various uncertainties, including customer... 

    Intrusion Detection in Wireless Sensor Networks Using Incremental Emotional Intelligence Models

    , M.Sc. Thesis Sharif University of Technology Bayat, Firoozeh (Author) ; Hashemi Mohammad Abad, Saeid (Supervisor)
    Abstract
    Wireless Sensor Networks (WSNs) are rapidly emerging as an important area in mobile computing research. Applications of WSNs are numerous and growing, some of them are even highly critical, like military or safety applications. Security measures must be applied to protect the network from a variety of attacks. Since no intrusion prevention measure is perfect, intrusion detection becomes an important second wall to protect the network. WSNs have unique nature which is different from other kinds of networks. In this project, we examine the characteristics and vulnerabilities of WSNs and propose a new intrusion detection model to protect the network security. In this work we have not only... 

    Designing a Dynamic Model for Human Resource Training and Development in Iran Electric Power Industry

    , M.Sc. Thesis Sharif University of Technology Dehghani Eshrat Abad , Meisam (Author) ; Mahlooji, Hashem (Supervisor)
    Abstract
    Nowadays Human Resource Management (HRM) has a critical and fundamental importance in organization management. In the beginning and middle of 20th century and even in the last decades of that century financial investments were important in different economic sectors and industries, but in the beginning of 21th century human resource and training is one of the most fundamental issues in all of economic sectors and industries, especially in power industry. Following this point of view, people with appropriate education and qualifications should be employed in power industry. These employees should be skillfully able of working with complicated technology of power industry as well as being... 

    Development of an EPFC-Based Method Engineering Environment for Assembly-Based Construction of Agile Methodologies

    , M.Sc. Thesis Sharif University of Technology Shakeri Hossein Abad, Zahra (Author) ; Ramsin, Raman (Supervisor)
    Abstract
    Methodology engineering is a branch of software engineering which deals with the design, development, and modification of methodologies, and the techniques and tools for developing information systems. Methodology engineering requirements demand the support of Computer Aided Methodology Engineering (CAME) tools. Recently, method engineering focus has shifted towards Situational Method Engineering (SME); i.e. context-specific methodology development. The emergence of SME approaches has brought about various methods for methodology development; including ad hoc, paradigm-based, extension-based and assembly-based approaches. In the assembly-based strategy, appropriate method chunks are... 

    Probabilistic optimal power flow in correlated hybrid wind-PV power systems: A review and a new approach

    , Article Renewable and Sustainable Energy Reviews ; Vol. 41 , 2014 , pp. 1437-1446 ; ISSN: 13640321 Aien, M ; Rashidinejad, M ; Firuz-Abad, M. F ; Sharif University of Technology
    2014
    Abstract
    Hastening the power industry reregulation juxtaposed with the unprecedented utilization of uncertain renewable energies (REs), faces power system operation with sever uncertainties. Consequently, uncertainty assessment of system performance is an obligation. This paper reviews the probabilistic techniques used for probabilistic optimal power flow (P-OPF) studies and proposes a novel and powerful approach using the unscented transformation (UT) method. The heart of the proposed method lies in how to produce the sampling points. Appropriate sampling points are chosen to perform the P-OPF with a high degree of accuracy and less computational burden compared with features of other existing... 

    Determination of Maximum and Optimal Penetration Level of Distributed Generation in Distributed Systems

    , M.Sc. Thesis Sharif University of Technology Seydali Seyf Abad, Mohammad (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    Nowadays, development of renewable electricity generation technologies, the advent of small efficient generators and increasing number of grid-connected consumers, have caused increasing interest in energy production next to the consumers locations. Distributed generation (DG) is often defined as small-scale generators that produce several kilowatts to tens of megawatts of electricity. One primary reason for using DG is its potential to reduce power losses in transmission and distribution networks. Several loss reduction methods such as capacitor placement, network reconfiguration and load management are used in distribution systems. Employing DG results in the highest loss reduction and...