Loading...
Search for: abedini--n--h--z
0.121 seconds

    Hydrogel nanocomposite based on chitosan-g-acrylic acid and modified nanosilica with high adsorption capacity for heavy metal ion removal

    , Article Iranian Polymer Journal (English Edition) ; Volume 24, Issue 9 , September , 2015 , Pages 725-734 ; 10261265 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Salimi, H ; Banazadeh, A ; Abedini, N ; Sharif University of Technology
    Springer-Verlag London Ltd  2015
    Abstract
    In this study, a novel hybrid hydrogel based on chitosan, acrylic acid and amine-functionalized nanosilica was prepared and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. This hydrogel nanocomposite was used for removal of Co2+, Cu2+, Pb2+ and Zn2+ ions from aqueous solution. The metal ion adsorption was measured by inductively coupled plasma mass spectrometry. The adsorption behavior showed that the presence of modified nanosilica enhanced the porosity of the hydrogel network and affected its adsorption capacity in response to different parameters such as nanosilica content, metal ion concentration, adsorbent content,... 

    The emergence of Iran in the world car industry: An estimation of its export potential

    , Article World Economy ; Volume 32, Issue 5 , 2009 , Pages 790-818 ; 03785920 (ISSN) Abedini, J ; Péridy, N ; Sharif University of Technology
    2009
    Abstract
    In the past 10 years Iran has been emerging as a major car producer in the world. However, due to delays in economic reforms, Iranian car exports have not increased as much as production. This paper presents a first estimation of the Iranian export potential in the car industry. Based on new theoretical developments of the gravity equation, an empirical bilateral trade model is proposed. It includes sectoral variables (car production, import tariffs), as well as other original variables, such as expectations and hysteresis. We then develop a dataset which includes the 40 major car-exporting countries in the world, 34 importing countries, a 10-year time period as well as four car production... 

    Effects of geometrical and processing parameters on mechanical properties of auxetic polyurethane foams

    , Article SN Applied Sciences ; Volume 4, Issue 6 , 2022 ; 25233971 (ISSN) Abedini, N. H. Z ; Nourani, A ; Mohseni, M ; Hosseini, N ; Norouzi, S ; Bakhshayesh, P. R ; Sharif University of Technology
    Springer Nature  2022
    Abstract
    This study aimed to investigate the influence of processing parameters on the mechanical properties of auxetic polyurethane foams including Poisson’s ratio and Young’s modulus. 12 different processing scenarios were considered using the method of Plackett–Burman in the design of experiments with three replicates for each one. Eventually, 36 foams were prepared with different densities and initial thicknesses, heating temperatures and times, applied compression ratios, and the rest times between two heating steps. The microstructures of the conventional and auxetic samples were observed by scanning electron microscopy (SEM). All samples were subjected to tensile loading in one direction with... 

    Stabilizing chaotic system on periodic orbits using multi-interval and modern optimal control strategies

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 17, Issue 10 , 2012 , Pages 3832-3842 ; 10075704 (ISSN) Abedini, M ; Vatankhah, R ; Assadian, N ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this paper, optimal approaches for controlling chaos is studied. The unstable periodic orbits (UPOs) of chaotic system are selected as desired trajectories, which the optimal control strategy should keep the system states on it. Classical gradient-based optimal control methods as well as modern optimization algorithm Particle Swarm Optimization (PSO) are utilized to force the chaotic system to follow the desired UPOs. For better performance, gradient-based is applied in multi-intervals and the results are promising. The Duffing system is selected for examining the proposed approaches. Multi-interval gradient-based approach can put the states on UPOs very fast and keep tracking UPOs with... 

    Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity

    , Article Journal of Photochemistry and Photobiology B: Biology ; Volume 178 , 2018 , Pages 124-132 ; 10111344 (ISSN) Faraji, M ; Mohaghegh, N ; Abedini, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A series of g-C3N4-SnO2/TiO2 nanotubes/Ti plates were fabricated via simple dipping of TiO2 nanotubes/Ti in a solution containing SnCl2 and g-C3N4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C3N4-SnO2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis... 

    Solution of population balance equations in emulsion polymerization using method of moments

    , Article Chemical Engineering Communications ; Volume 200, Issue 1 , 2013 , Pages 20-49 ; 00986445 (ISSN) Vafa, E ; Shahrokhi, M ; Abedini, H ; Sharif University of Technology
    2013
    Abstract
    In this work, the method of moments is used for solution of population balance equations appearing in modeling of emulsion polymerization (EP). The zero-one model without coagulation effect and the pseudo-bulk model including coagulation effect are investigated as two common approaches for modeling EP processes. The fixed quadrature method is used to close the set of moment equations, and the maximum entropy approach is applied to reconstruct the particle size distribution from a finite number of its moments. Comparing the results with those obtained by the high-precision finite volume technique indicates that, despite the low computational load of the moment method, it has an acceptable... 

    Modeling, simulation and control of a tubular fixed-bed dimethyl ether reactor

    , Article Chemical and Biochemical Engineering Quarterly ; Volume 24, Issue 4 , 2010 , Pages 415-423 ; 03529568 (ISSN) Yasari, E ; Shahrokhi, M ; Abedini, H ; Sharif University of Technology
    2010
    Abstract
    This paper considers the modeling and control of a tubular fixed bed reactor with recycle stream for dimethyl ether (DME) production. For simulation purposes, a pseudo homogeneous model has been developed. By reactor simulation under steady state condition, effects of parameters such as feed rate, pressure and shell temperature are investigated. Using the steady state model, an optimizer that maximizes the reactor yield has been developed. For cooling the reactor, a steam drum that uses heat of reactions to produce steam was coupled with the reactor. Through dynamic simulation, system open loop response was obtained and two control loops were considered for controlling the reactor... 

    Inferential closed-loop control of particle size and molecular weight distribution in emulsion polymerization of styrene

    , Article Polymer Engineering and Science ; Volume 50, Issue 12 , 2010 , Pages 2306-2320 ; 00323888 (ISSN) Vafa, E ; Shahrokhi, M ; Abedini, H ; Sharif University of Technology
    2010
    Abstract
    In this work, simultaneous inferential control of particle size distribution (PSD) and molecular weight distribution (MWD) in a semi-batch emulsion polymerization reactor of styrene has been addressed. Using a comprehensive dynamic model for PSD and MWD predictions and performing a sensitivity analysis, it has been revealed that free surfactant and chain transfer agent (CTA) concentrations in the reactor are the most suitable candidates for inferential control of PSD and MWD, respectively. To control concentrations of these species in the reactor, their inlet feed flow rates are used as manipulated variables. It is assumed that the concentration of CTA is measured infrequently and therefore... 

    Zeolite-based catalytic micromotors for enhanced biological and chemical water remediation

    , Article New Journal of Chemistry ; Volume 44, Issue 44 , 2020 , Pages 19212-19219 Abedini, F ; Madaah Hosseini, H. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Zeolite-based micromotors were developed to eliminate the biological and chemical contamination of water in a fast and efficient way. The motors consist of a silver-exchanged zeolite core and a partial catalytic coating. These porous engines showed rapid killing of Pseudomonas aeruginosa bacteria cells in a very short time, less than 7.5 minutes. The heavy metal uptake of the zeolitic motors during the first 20 minutes of contact was considerably higher than that of zeolite particles by 23% for Pb2+, 19% for Co2+, and 16% for Ni2+. Also, the maximum removal efficiency of the motors (at room temperature and for 6 hours) for Pb2+, Co2+, and Ni2+ was 93%, 87%, and 78%, respectively, higher than... 

    WiP: Floating xy-yx: An efficient thermal management routing algorithm for 3d nocs

    , Article 16th IEEE International Conference on Dependable, Autonomic and Secure Computing, IEEE 16th International Conference on Pervasive Intelligence and Computing, IEEE 4th International Conference on Big Data Intelligence and Computing and IEEE 3rd Cyber Science and Technology Congress, DASC-PICom-DataCom-CyberSciTec 2018, 12 August 2018 through 15 August 2018 ; 2018 , Pages 730-735 ; 9781538675182 (ISBN) Safari, M ; Shirmohammadi, Z ; Rohbani, N ; Farbeh, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    3D Network-on-Chips (3D NoCs) have higher scalability, higher throughput, and lower power consumption over 2D NoCs. However, the reliability of data transfer in 3D NoCs is seriously threatened by thermal problems. This is due to poor heat dissipation, inappropriate traffic distribution, and cooling restriction for layers away of the chip heat-sink in 3D NoCs. To solve this problem, this paper proposes an efficient deadlock-free and traffic-And thermal-Aware routing algorithm, called Floating XY-YX. The main idea behind Floating XY-YX routing algorithm is twofold: 1) to use XY and YX routing algorithms in consecutive layers in dessicate form, and 2) to evenly load the traffic, which is... 

    LETHOR: a thermal-aware proactive routing algorithm for 3D NoCs with less entrance to hot regions

    , Article Journal of Supercomputing ; Volume 78, Issue 6 , 2022 ; 09208542 (ISSN) Safari, M ; Shirmohammadi, Z ; Rohbani, N ; Farbeh, H ; Sharif University of Technology
    Springer  2022
    Abstract
    Although many Dynamic Thermal Management (DTM) techniques are employed to overcome thermal problems in 3D NoCs, none of them consider temperature information of all nodes of a layer at the same time, so that they cannot reduce the temperature of the network properly.To overcome this problem, this paper proposes an efficient proactive thermal-aware routing algorithm, called Less Entrance to Hot Regions (LETHOR), to keep the NoC temperature lower than a predefined thermal limit. LETHOR routes the network packets based on the temperature information of all nodes in the layers instead of considering only the neighbor nodes in each hop. To this aim, LETHOR introduces a Hot Region in each layer... 

    Selective voltammetric determination of d-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2 nanoparticles and quinizarine

    , Article Journal of Electroanalytical Chemistry ; Volume 644, Issue 1 , Jan , 2010 , Pages 1-6 ; 15726657 (ISSN) Mazloum Ardakani, M ; Beitollahi, H ; Taleat, Z ; Naeimi, H ; Taghavinia, N ; Sharif University of Technology
    2010
    Abstract
    A carbon paste electrode (CPE) chemically modified with TiO2 nanoparticles and quinizarine (QZ) was used as a selective electrochemical sensor for the simultaneous determination of minor amounts of d-penicillamine (D-PA) and tryptophan (Trp). This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of both d-PA and Trp. Substantial decreases of anodic overpotentials for both compounds made this analysis possible. Results of square wave voltammetry (SWV) using this modified electrode showed two well-resolved anodic waves for the oxidation of d-PA and Trp, which makes the simultaneous determination of both compounds possible. The peak potential for the... 

    Friction stir welding of similar and dissimilar aluminium alloys for automotive applications

    , Article International Journal of Automotive and Mechanical Engineering ; Volume 13, Issue 2 , 2016 , Pages 3401-3412 ; 22298649 (ISSN) Selamat, N. F. M ; Baghdadi, A. H ; Sajuri, Z ; Kokabi, A. H ; Sharif University of Technology
    Universiti Malaysia Pahang  2016
    Abstract
    Aluminium alloys are lightweight materials relatively used in automotive industries. However, welding using the conventional welding methods is known to be difficult. In this study, the friction stir welding (FSW) known as the solid state joining process was extensively used for joining similar and dissimilar 5 mm aluminium alloy plates. The butt-joint type of similar joints (AA5083-AA5083) and dissimilar joints (AA5083-AA6061) were carried out under the same welding parameters; 1000 rpm (rotational speed) and 100 mm/min (transverse speed). Macro- and microstructural observations were acquired at the cross-section of the weld regions by stereo and optical microscopes. The microstructural... 

    Identification of 4D Lü hyper-chaotic system using identical systems synchronization and fractional adaptation law

    , Article Applied Mathematical Modelling ; Vol. 38, issue. 19-20 , 2014 , p. 4652-4661 Abedini, M ; Gomroki, M ; Salarieh, H ; Meghdari, A ; Sharif University of Technology
    2014
    Abstract
    In this paper, the parameters of a 4D Lü hyper-chaotic system are identified via synchronization of two identical systems. Unknown parameters of the drive system are identified by an adaptive method. Stability of the closed-loop system with one state feedback controller is studied by using the Lyapunov theorem. Also the convergence of the parameters to their true values is proved. Then a fractional adaptation law is applied to reduce the time of parameter convergence. Finally the results of both integer and fractional methods are compared  

    Performance optimization of the helical heat exchanger with turbulator

    , Article Frontiers in Energy Research ; Volume 9 , 2022 ; 2296598X (ISSN) Xifeng, W ; Xiaoluan, Z ; Mahariq, I ; Salem, M ; Ghalandari, M ; Ghadak, F ; Abedini, M ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    In this paper, optimization on a two-tube helical heat exchanger with a fin is represented. The spiral pipes heat exchanger which is made of the cooper is adopted for investigation. The effects of three types of fins with the proposed geometric shapes on the overall heat transfer coefficient and pressure loss are investigated. The fins are located on the inner surface of the outer pipe. The obtained numerical results are compared with the experimental results, and a good agreement is observed between the results. The studies show that the total heat transfer coefficient has increased by 170% compared to an exchanger with no fin. Therefore, the best fin has been selected based on the... 

    Mechanism of photocatalytic reduction of CO2 by Ag3PO4(111)/g-C3N4 nanocomposite: a first-principles study

    , Article Journal of Physical Chemistry C ; Volume 123, Issue 36 , 2019 , Pages 22191-22201 ; 19327447 (ISSN) Tafreshi, S. S ; Moshfegh, A. Z ; De Leeuw, N. H ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Density functional theory (DFT) calculations have been performed to investigate the electronic structure and photocatalytic activity of a hybrid Ag3PO4(111)/g-C3N4 structure. Due to Ag(d) and O(p) states forming the upper part of the valence band and C(p), N(p), and Ag(s) the lower part of the conduction band, the band gap of the hybrid material is reduced from 2.75 eV for Ag3PO4(111) and 3.13 eV for monolayer of g-C3N4 to about 2.52 eV, enhancing the photocatalytic activity of the Ag3PO4(111) surface and g-C3N4 sheet in the visible region. We have also investigated possible reaction pathways for photocatalytic CO2 reduction on the Ag3PO4(111)/g-C3N4 nanocomposite to determine the most... 

    Model reference adaptive control in fractional order systems using discrete-time approximation methods

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 25, Issue 1-3 , August , 2015 , Pages 27-40 ; 10075704 (ISSN) Abedini, M ; Nojoumian, M. A ; Salarieh, H ; Meghdari, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this paper, model reference control of a fractional order system has been discussed. In order to control the fractional order plant, discrete-time approximation methods have been applied. Plant and reference model are discretized by Grünwald-Letnikov definition of the fractional order derivative using "Short Memory Principle". Unknown parameters of the fractional order system are appeared in the discrete time approximate model as combinations of parameters of the main system. The discrete time MRAC via RLS identification is modified to estimate the parameters and control the fractional order plant. Numerical results show the effectiveness of the proposed method of model reference adaptive... 

    Computation of armature reaction field and full-load characteristics of an axial flux surface mounted pm machine using a new analytical approach

    , Article 26th Iranian Conference on Electrical Engineering, ICEE 2018, 8 May 2018 through 10 May 2018 ; 2018 , Pages 1027-1031 ; 9781538649169 (ISBN) Seyedi, S. M ; Sharifi, A. H ; Abedini Mohammadi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In recent years axial flux permanent magnet (AFPM) machines have found industrial applications because of such characteristics as high power density, compact structure and disc-like shape. Like other electrical machines, prediction of flux density distribution in the air gap of AFPM is essential. In this paper, an analytical method for calculation of air gap flux density caused by armature reaction is presented. The solution is based on Maxwell's equations. Separation of variables method is applied to field equations and 2D distribution of magnetic flux density in the air gap calculated in term of Fourier series. The 2-D distribution of three-phase armature winding is modeled exactly.... 

    Heterogeneity of trade patterns in high-tech goods across established and emerging exporters: A panel data analysis

    , Article Emerging Markets Finance and Trade ; Volume 49, Issue 4 , Dec , 2013 , Pages 4-21 ; 1540496X (ISSN) Abedini, J ; Sharif University of Technology
    2013
    Abstract
    This study aims to identify underlying fundamental factors behind high-tech exports by the established and emerging countries, separately. The author also examines whether the two export patterns converge over time. Based on the gravity approach, a generalized method of moments panel estimator is applied to rigorously address the endogeneity problem in both static and dynamic versions of the model. In addition, the nonstationary and cointegrating features of variables are discussed. The author finds that high-tech exports from the emerging countries are mainly based on foreign direct investment inflows and participation in the international production chain, as well as a high degree of... 

    In silico and in vitro studies of GENT-EDTA encapsulated niosomes: A novel approach to enhance the antibacterial activity and biofilm inhibition in drug-resistant Klebsiella pneumoniae

    , Article Biomaterials Advances ; Volume 149 , 2023 ; 27729508 (ISSN) Akbarzadeh, I ; Rezaei, N ; Bazzazan, S ; Mezajin, M. N ; Mansouri, A ; Karbalaeiheidar, H ; Ashkezari, S ; Moghaddam, Z. S ; Lalami, Z. A ; Mostafavi, E ; Sharif University of Technology
    Elsevier Ltd  2023
    Abstract
    Klebsiella pneumoniae (Kp) is a common pathogen inducing catheter-related biofilm infections. Developing effective therapy to overcome antimicrobial resistance (AMR) in Kp is a severe therapeutic challenge that must be solved. This study aimed to prepare niosome-encapsulated GENT (Gentamicin) and EDTA (Ethylenediaminetetraacetic acid) (GENT-EDTA/Nio) to evaluate its efficacy toward Kp strains. The thin-film hydration method was used to prepare various formulations of GENT-EDTA/Nio. Formulations were characterized for their physicochemical characteristics. GENT-EDTA/Nio properties were used for optimization with Design-Expert Software. Molecular docking was utilized to determine the...