Loading...
Search for: aberi-zaker--parisa
0.097 seconds

    Multi-Vector Energy Transmission Networks Control Using Game Theory

    , M.Sc. Thesis Sharif University of Technology Aberi Zaker, Parisa (Author) ; Bozorgmehry Boozarjomehry, Ramin (Supervisor)
    Abstract
    Gas transmission networks play an important role in multi-vector energy networks. Therefore, reliable and efficient control of gas transmission networks with the minimum energy consumption is utmost task and is still an active research area. This work, introduces a distributed, model-free, and game-theoretic approach comprising a simultaneous game followed by a sequential game, to achieve the control objectives in gas transmission networks. The cooperative game approach is adopted for this purpose. In the proposed method two fuzzy inference systems have been used to obtain the payoff of each player in the game of gas transmission network control, the first one has been used to determine the... 

    Greedy defining sets of graphs

    , Article Australasian Journal of Combinatorics ; Volume 23 , 2001 , Pages 231-235 ; 10344942 (ISSN) Zaker, M ; Sharif University of Technology
    2001
    Abstract
    For a graph G and an order σ on V(G), we define a greedy defining set as a subset S of V(G) with an assignment of colors to vertices in S, such that the pre-coloring can be extended to a χ(G)-coloring of G by the greedy coloring of (G, σ). A greedy defining set of a χ(G)-coloring C of G is a greedy defining set, which results in the coloring C (by the greedy procedure). We denote the size of a greedy defining set of C with minimum cardinality by GDN (G, σ, C). In this paper we show that the problem of determining GDN(G, σ, C), for an instance (G, σ, C) is an NP-complete problem  

    Nanoparticle catalysts

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 23 , 2009 ; 00223727 (ISSN) Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    In this review, the importance of nanoparticles (NPs), with emphasis on their general and specific properties, especially the high surface-to-volume ratio (A/V), in many technological and industrial applications is studied. Some physical and chemical preparation methods for growing several metallic and binary alloy NP catalysts are reviewed. The growth and mechanism of catalytic reactions for synthesis of 1D nanostructures such as ZnO nanowires and multiwall carbon nanotubes (MWCNTs) are discussed. Gas-phase production with emphasis on dependence of catalytic activity and selectivity on size, shape and structure of NPs is also investigated. Application of NP catalysts in several... 

    Influence of Temperature on Microstructure and Performance of a Lithium-ion Battery

    , M.Sc. Thesis Sharif University of Technology Zaker, Nafiseh (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    In this study, the effect of temperature on the microstructure and electrochemical properties of the NMC batteries has been studied. An extensive set of accelerated aging tests has been carried out employing a Li-ion high energy 18650 system (2.2 Ah, negative electrode: carbon, positive electrode: Li(Ni0.5Mn0.3Co0.2) O2. Different influence factors on cycle aging, such as temperature and discharge rate have been investigated. The aged 18650 cells have been inspected via scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), impedance spectroscopy, and X-ray diffraction (XRD) after disassembly to find more information about the chemical reasons of the degradation and... 

    Heat Transfer and Pressure Drop Performance of Spiral Baffle Heat Exchangers

    , M.Sc. Thesis Sharif University of Technology Zaker Hosseini, Farhad (Author) ; Farhadi, Fathollah (Supervisor)
    Abstract
    In this work, a numerical investigation on shell side performance of a continuous helical baffle helixchanger along with smooth and helically ribbed tubes using CFD commercial code, Fluent, has been performed. The results of simulation for this type of exchanger were compared to a similar heat exchanger with segmental baffles. The geometries are created and meshed using Solidworks and Ansys Meshing softwares, respectively. Mesh generation is carried out using unstructured tetrahedral type elements. Element size (or number of elements) are chosen in such a manner that maintain accuracy and reliability of results in a reasonable run time. Simulation validation were carried out by comparison of... 

    The effect of Au/Ag ratios on surface composition and optical properties of co-sputtered alloy nanoparticles in Au-Ag:SiO2 thin films

    , Article Journal of Alloys and Compounds ; Volume 486, Issue 1-2 , 2009 , Pages 22-28 ; 09258388 (ISSN) Sangpour, P ; Akhavan, O ; Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    Gold-silver alloy nanoparticles with various Au concentrations in sputtered SiO2 thin films were synthesized by using RF reactive magnetron co-sputtering and then heat-treated in reducing Ar + H2 atmosphere at different temperatures. The UV-visible absorption spectra of the bimetallic systems confirmed the formation of alloy nanoparticles. The optical absorption of the Au-Ag alloy nanoparticles exhibited only one plasmon resonance absorption peak located at 450 nm between the absorption bands of pure Au and Ag nanoparticles at 400 and 520 nm, respectively, for the thin films annealed at 800 °C. The maximum absorption wavelength of the surface plasmon band showed a red shift with increasing... 

    Experimental Study of Drying and Calcination of Simulated High-Level Waste (HLW)

    , M.Sc. Thesis Sharif University of Technology Farahzadi, Zahra (Author) ; Samadfam, Mohammad (Supervisor) ; Zahakifar, Fazel (Supervisor) ; Zaheri, Parisa (Co-Supervisor)
    Abstract
    One of the novel methods of stabilization of nuclear waste is the use of vitrification technology. In order to stabilize high level wastes (HLLW) in glass, it is required that the elements are in their oxide form. Therefore, it is necessary to evaporate the waste and turn it into a solid form so that the elements can be converted into oxide form in the calcination furnace. Hence, one of the challenges of stabilization is the optimization of evaporation and calcination conditions. In this research, the parameters affecting evaporation were first investigated. Using laboratory measurements of application: temperature (110 to 180 °C), presence of nitric acid (0.5 to 4 mol/L), ratio of zirconium... 

    The Study of Effective Parameters on Thorium Extraction by Cyanex 272 in an Emulsion Liquid Membrane System

    , M.Sc. Thesis Sharif University of Technology Ehyaie, Darya (Author) ; Samadfam, Mohammad (Supervisor) ; Zaheri, Parisa (Supervisor) ; Zahakifar, Fazel (Co-Supervisor)
    Abstract
    This study used the emulsion liquid membrane method to investigate the extraction and separation of thorium from nitrate solution. According to the results obtained from the studies, Cyanex 272 was a suitable option for selectively extracting thorium. For simultaneous extraction and stripping of thorium from dilute aqueous solutions, an emulsion liquid membrane system consisting of Cyanex 272 as an extractant, Span 80 as a surfactant and sulfuric acid solution as a receiving phase (internal phase) was used. Emulsion liquid membrane method has high mass transfer flux due to high surface to volume ratio, which causes high extraction efficiency and fast transfer of thorium ions from its low... 

    Photo-degradation of methelyne blue over V2O5- TiO2 nano-porous layers synthesized by micro arc oxidation

    , Article Catalysis Letters ; Volume 134, Issue 1-2 , 2010 , Pages 162-168 ; 1011372X (ISSN) Bayati, M. R ; Golestani Fard, F ; Zaker Moshfegh, A ; Sharif University of Technology
    2010
    Abstract
    V2O5-TiO2 porous layers were synthesized via micro-arc oxidation for the first time. The effect of the applied voltage on morphology, composition, and photo-activity of the layers was investigated. The layers, which consisted of anatase, rutile, and vanadium pentoxide phases, revealed an enhanced photo-activity. About 93% of methylene blue solution was degraded on the synthesized layers after 120 min UV-irradiation with a reaction rate constant of k = 0.0228 min-1. The band gap energies of the vanadia-titania and pure titania layers were calculated as 2.56 and 3.39 eV, respectively  

    Fabrication Patient-Specific Drill Guide Templates for Cervical Pedicle Screw Placement

    , M.Sc. Thesis Sharif University of Technology Safahieh, Amir Hossein (Author) ; Arjmand, Navid (Supervisor) ; Parnianpour, Mohammad (Supervisor) ; Azimi, Parisa (Co-Supervisor)
    Abstract
    One of the most common spinal surgeries involves spinal fusion or vertebral fixation, which is used to treat various conditions such as intervertebral disc disease, scoliosis (lateral deviation of the spinal column), fractures, infections, or the presence of tumors in the spinal column. In this surgical procedure, the use of pedicle screws and titanium rods prevents motion and friction between two vertebrae. Screws may enter the vertebrae in the wrong position and angle, causing bone weakening, rupture of nerve roots or blood vessels, weakness or lack of sensation in some parts of the body, spinal cord injury, and in severe cases, paralysis of the patient. For this reason, fusion surgery is... 

    Growth of Na0.3WO3 nanorods for the field emission application

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 20 , 2009 ; 00223727 (ISSN) Azimirad, R ; Khademi, A ; Akhavan, O ; Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    Na0.3WO3 1D nanostructure forms (nanorods and nanobelts) were grown by a solid-liquid-solid mechanism from a 40 nm sputtered tungsten film deposited on a soda-lime substrate and annealed at 700 °C in a tubular furnace in N2 ambient. The morphology, structure, composition and chemical state of the prepared nanostructures were characterized by SEM, XRD, TEM, SAED and XPS measurements. The Na0.3WO3 1D nanostructures were found to have a cubic crystalline structure and grown along the [0 0 1] direction. The nanorods are a few micrometres in length and about 50 nm in diameter. The field-emission application of the prepared samples at different distances between the cathode and the anode was... 

    Synthesis, Characterization and Photoelectrochemical Application of two Dimensional MoS2 and WS2 Nanosheets

    , Ph.D. Dissertation Sharif University of Technology Zirak, Mohammad (Author) ; Zaker Moshfegh, AliReza (Supervisor) ; Moradlou, Omran (Co-Advisor)
    Abstract
    In this research, Synthesis, characterization and photoelectrochemical application of two dimensional MoS2 and WS2 nanosheets have been carefully investigated. And finally, based on theoritical and experimental analysis results, the mechanisms of the observed photoelectrochemical (PEC) activities were suggested.The ab initio density functional calculations about Mo1-xWxS2 monolayer deposited over a TiO2 (110) substrate revealed a shift in band position of the Mo1-xWxS2 in favor of photoelectrochemical water splitting. Moreover, increase of W concentration in Mo1-xWxS2 could improve the charge separation and increase the effective mass ratio leading to an extension of the electron–hole... 

    A study on the effects of Fex/Niy/MgO(1-x-y) catalysts on the volumetric and electrochemical hydrogen storage of multi-walled carbon nanotubes

    , Article International Journal of Hydrogen Energy ; Volume 35, Issue 1 , 2010 , Pages 231-237 ; 03603199 (ISSN) Reyhani, A ; Mortazavi, S. Z ; Zaker Moshfegh, A ; Nozad Golikand, A ; Sharif University of Technology
    2010
    Abstract
    The effects of various ratios of Fe/Ni/MgO and growth temperatures on yield, diameter and quality of multi-walled carbon nanotubes (MWCNTs) were studied. Thermal gravimetric analysis (TGA) confirmed that the MWCNT yield depends on Fe/Ni ratio with the following order; Fe0.5 Ni0.5 > Fe > Fe0.75 Ni0.25 > Fe0.25 Ni0.75 > Ni. The results indicated that there is an optimum temperature (940 °C) for the MWCNT growth both from quality and quantity (yield) aspects as compared to other temperatures. Moreover, the changes on Fe/Ni to MgO ratio for the MWCNT growth revealed that Fe/Ni/MgO with the ratio of 17.5/17.5/65 had the highest quality and surface area as compared to the other ratios. The... 

    Growth and field emission study of molybdenum oxide nanostars

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 44 , 2009 , Pages 19298-19304 ; 19327447 (ISSN) Khademi, A ; Azimirad, R ; Zavarian, A. A ; Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    The field emission properties of MoO2 nanostars grown on a silicon substrate and their emission performance in various vacuum gaps are reported in this article. A new structure of molybdenum oxides, named a nanostar, is grown by thermal vapor deposition with a length of ̃1 μm, a thickness of ̃50 nm, and its width in the range of 500-700 nm. The morphology, structure, composition, and chemical states of the prepared nanostars were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). According to XRD analysis, the grown nanostructures are composed of both crystalline Mo4O11 and... 

    Oxidized graphitic carbon nitride nanosheets as an effective adsorbent for organic dyes and tetracycline for water remediation

    , Article Journal of Alloys and Compounds ; Volume 809 , 2019 ; 09258388 (ISSN) Yousefi, M ; Villar Rodil, S ; Paredes, J. I ; Zaker Moshfegh, A. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Graphitic carbon nitride (g-C3N4) is promising as adsorbent for water remediation as its chemical structure allows a variety of mechanisms to interact with wastewater pollutants. However, several issues, such as low specific surface area and insufficient dispersibility in water, have to be tackled to achieve a competitive performance in such use. Previous attempts to improve the features of g-C3N4as an adsorbent have relied on carbon doping and exfoliation in the solid phase by thermal expansion. Here, we demonstrate that exfoliation in the liquid phase by a combination of oxidation and sonication allows preparing g–C3N4–based materials with improved dispersibility in water, increased... 

    Study of Antibacterial Performance of Metal Oxide Nanostructures and their Effect on Bacterial Growth Kinetics

    , M.Sc. Thesis Sharif University of Technology Afkhami, Fatemeh Sadat (Author) ; Naseri, Naimeh (Supervisor) ; Zaker Moshfegh, Alireza (Co-Supervisor)
    Abstract
    Fighting contagious microbial diseases is considered a serious health issue, which has attracted much attention in worldwide. Thus, development of new materials based on nanostructures as a new generation of antibiotics to address this challenge has been of interest to researchers in recent years. Nanostructures based on metallic oxide semiconductors such as oxides with light absorption, production of electron-hole pairs in needle like structures cause tearing bacterial membrane and eventually destroy the bacterium. To this end, we designed experiments to study mechanism and physics governing the process of bacterial degradation to determine the best conditions for inhibiting bacteria... 

    Extended gibbs free energy and laplace pressure of ordered hexagonal close-packed spherical particles: A wettability study

    , Article Langmuir ; Volume 37, Issue 28 , 2021 , Pages 8382-8392 ; 07437463 (ISSN) Bayat, A ; Ebrahimi, M ; Rahemi Ardekani, S ; Saievar Iranizad, E ; Zaker Moshfegh, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The wetting property of spherical particles in a hexagonal close-packed (HCP) ordering from extended Gibbs free energy (GFE) and Laplace pressure view points is studied. A formalism is proposed to predict the contact angle (θ) of a droplet on the HCP films and penetration angle (α) of the liquid on the spherical particles. Then, the extended Laplace pressure for the layered HCP ordering is calculated and a correlation between the wetting angle, sign of pressure, and pressure gradient is achieved. Our results show that the sign and the slope of pressure are important criteria for determining the wettability state and it is found that the contact angle is independent of the particle radius, as... 

    Sustainable superhydrophobic branched hierarchical ZnO nanowires: Stability and wettability phase diagram

    , Article Applied Surface Science ; Volume 561 , 2021 ; 01694332 (ISSN) Ebrahimi, M ; Bayat, A ; Rahemi Ardekani, S ; Saievar Iranizad, E ; Zaker Moshfegh, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Stability of Cassie-Baxter (CB) state is very critical in application of superhydrophobic surfaces. The most industrial applications of superhydrophobic surfaces are limited by the transition from the CB state to Wenzel (W) state. In this research, CB state stability of branched hierarchical ZnO nanowires (BH-ZnO NWs) was investigated as compared with ZnO nanowires (ZnO NWs) by using theoretical and experimental approaches. For this purpose, surface of the BH-ZnO NWs and ZnO NWs were modified by thin layers of methyltrimethoxysilane (MTMS). The MTMS thickness was optimized by varying NH4F (0, 5, 10, 20 μL) as used catalyst. The highest water contact angle (WCA) was measured at about 153 ± 3°... 

    Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives

    , Article Nanoscale Horizons ; Volume 3, Issue 2 , 2018 , Pages 90-204 ; 20556756 (ISSN) Samadi, M ; Sarikhani, N ; Zirak, M ; Zhang, H ; Zhang, H. L ; Zaker Moshfegh, A. R ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    Group 6 transition metal dichalcogenides (G6-TMDs), most notably MoS2, MoSe2, MoTe2, WS2 and WSe2, constitute an important class of materials with a layered crystal structure. Various types of G6-TMD nanomaterials, such as nanosheets, nanotubes and quantum dot nano-objects and flower-like nanostructures, have been synthesized. High thermodynamic stability under ambient conditions, even in atomically thin form, made nanosheets of these inorganic semiconductors a valuable asset in the existing library of two-dimensional (2D) materials, along with the well-known semimetallic graphene and insulating hexagonal boron nitride. G6-TMDs generally possess an appropriate bandgap (1-2 eV) which is... 

    Well-designed Ag/ZnO/3D graphene structure for dye removal: Adsorption, photocatalysis and physical separation capabilities

    , Article Journal of Colloid and Interface Science ; Volume 537 , 2019 , Pages 66-78 ; 00219797 (ISSN) Kheirabadi, M ; Samadi, M ; Asadian, E ; Zhou, Y ; Dong, C ; Zhang, J ; Moshfegh Zaker, A. R ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    In this research, adsorption and photocatalytic degradation process were utilized to remove organic dye from wastewater. To accomplish that, a newly-designed ternary nanostructure based on Ag nanoparticles/ZnO nanorods/three-dimensional graphene network (Ag NPs/ZnO NRs/3DG) was prepared using a combined hydrothermal-photodeposition method. The three-dimensional structure of graphene hydrogel as a support for growth of ZnO nanorods was characterized using field emission scanning electron microscopy (FESEM). In addition, diameter of silver nanoparticles grown on the ZnO nanorods with the average aspect ratio of 5 was determined in the range of 30–80 nm by using transmission electron microscopy...