Loading...
Search for:
abooee--a
0.098 seconds
Total 14669 records
Free chattering synchronization of two Lur'e differential inclusions with sector input nonlinearity
, Article 2014 IEEE Conference on Control Applications ; 2014 , PP. 1035-1040 ; ISBN: 9781479974092 ; Haeri, M ; Sharif University of Technology
2014
Abstract
This paper deals with the synchronization of two Lur'e differential inclusions containing sector nonlinearity. Lyapunov stability theorem is employed to design the control inputs. The controllers are designed considering three important practical features in physical systems. First, differential equation part of the Lur'e differential inclusion is assumed to be convex. Second, it is presumed that parameters of the Lur'e differential inclusion are not completely known. Third, sector nonlinearities are considered on control inputs applied to the Lur'e differential inclusions. To assess performance and effectiveness of the proposed controllers, synchronization of two rotor dynamic systems is...
Synchronizing two different fractional order hyperchaotic systems using generalized fractional order sliding mode control
, Article Proceedings of 2011 2nd International Conference on Instrumentation Control and Automation, ICA 2011, 15 November 2011 through 17 November 2011, Bandung ; 2011 , Pages 125-129 ; 9781457714603 (ISBN) ; Haeri, M ; Sharif University of Technology
2011
Abstract
Synchronization of two fractional order hyperchaotic systems considering uncertainties and sector nonlinear inputs is investigated in this paper. A new fractional order sliding mode control scheme is proposed to synchronize two different fractional order hyperchaotic systems in the presence of uncertainties, sector nonlinearity in the control inputs. The stability of the error dynamics is proven using Lyapunov stability theorem. Simulation results are provided to verify the feasibility and effectiveness of the proposed synchronizing method
Stabilisation of commensurate fractional-order polytopic non-linear differential inclusion subject to input non-linearity and unknown disturbances
, Article IET Control Theory and Applications ; Volume 7, Issue 12 , 2013 , Pages 1624-1633 ; 17518644 (ISSN) ; Haeri, M ; Sharif University of Technology
2013
Abstract
In this study, a fractional-order adaptive-sliding mode control (SMC) scheme is proposed to stabilise commensurate fractional-order polytopic non-linear differential inclusion systems containing sector and dead-zone nonlinearities in the control inputs and unknown bounded disturbances. The suggested control method is composed of fractional-order sliding surfaces, adaptive-SMC inputs and adaptation laws for unknown bounds of disturbances. The Lyapunov stability theorem is used to prove the stability of the closed-loop system. A practical system and two numerical examples are simulated to show the effectiveness and performance of the proposed control technique
Stabilization of Linear and Nonlinear Differential Inclusions Considering Fractional and Integer order Derivatives
, Ph.D. Dissertation Sharif University of Technology ; Haeri, Mohammad (Supervisor)
Abstract
First, stabilization problem of an integer order-nonlinear differential inclusion (IO-NDI) in the form of tracking problem is investigated and discussed while control inputs are subjected to the sector and dead-zone nonlinearities. Based on two the well-known theorems, the mentioned differential inclusion is modeled by a nonlinear system possessing polytopic uncertainties. For tackling the mentioned problem, sliding mode control (SMC) approach is applied and developed. Second, two issues including stability analysis and stabilization problem of a fractional order-linear differential inclusion (FO-LDI) are studied for both fractional order derivatives and separately. For solving these...
Robust stability and stabilization of LTI fractional order systems with polytopic and interval uncertainties
, Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 2253-2258 ; 9781509059638 (ISBN) ; Adelipour, S ; Haeri, M ; Sharif University of Technology
2017
Abstract
This paper proposes a novel representation of uncertain LTI fractional order systems based on the state-space model which contains both interval and polytopic uncertainties. First, a set of linear matrix inequalities, which are sufficient conditions, are presented for analyzing the robust stability of the mentioned systems. Then, some sufficient conditions are obtained for designing a feedback gain matrix to tackle the robust stabilization of the considered systems. Note that the concluded conditions of this paper are valid for fractional systems with a given constant derivative order α in 1 ≤ α < 2 and also, can be employed conservatively for α in 0 < α < 1. Finally, through two numerical...
A robust finite-time hyperchaotic secure communication scheme based on terminal sliding mode control
, Article 24th Iranian Conference on Electrical Engineering, ICEE 2016, 10 May 2016 through 12 May 2016 ; 2016 , Pages 854-858 ; 9781467387897 (ISBN) ; Moravej Khorasani, M ; Haeri, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2016
Abstract
In this paper, a new robust finite-time hyperchaotic secure communication scheme is proposed by combining robust finite-time synchronization of two hyperchaotic systems and hyperchaotic multiplication masking technique. The mentioned synchronization is achieved by introducing new terminal sliding mode controllers. As a main novelty of the introduced scheme, an adjustable total finite time is obtained such that the decrypted message signal will be completely identical with the transmitted message signal for times larger than the discussed finite time. Compared with other secure communication schemes, the suggested method has several advantages including finite-time stability for dynamical...
Finite-Time guidance laws for landing process of a spacecraft subjected to disturbances
, Article 2016 4th International Conference on Control, Instrumentation, and Automation, ICCIA 2016, 27 January 2016 through 28 January 2016 ; 2016 , Pages 296-300 ; 9781467387040 (ISBN) ; Moravej Khorasani, M ; Haeri, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2016
Abstract
This paper investigates the finite-Time landing of a spacecraft on a celestial target subjected to disturbances and air drag forces. Based on nonsingular fast terminal sliding mode control, a novel guidance law is designed to accomplish the landing goal within a specified finite time while the upper bound of disturbances is assumed to be known. Finally, a numerical example of the spacecraft landing problem is simulated by applying the proposed scheme. The obtained results illustrate that the designed guidance law can achieve the landing goal in the specified finite time
Free-chattering robust finite time tracking for connected double integrator nonlinear systems
, Article 2016 4th International Conference on Control, Instrumentation, and Automation, ICCIA 2016, 27 January 2016 through 28 January 2016 ; 2016 , Pages 301-306 ; 9781467387040 (ISBN) ; Moravej Khorasani, M ; Haeri, M ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2016
Abstract
In this paper, a new form of generalized nonsingular fast terminal sliding mode control approach is proposed to provide the finite time tracking in connected chain of double integrator nonlinear systems subjected to additive bounded unknown uncertainties, disturbances, and internal interactions. The proposed approach presents an adjustable finite time for achieving the tracking goal which is a summation of two separate tunable times including finite reaching time and finite settling time. Tuning of the total finite time is done by adjusting arbitrary parameters in the control inputs and sliding surfaces. The high frequency switching of the control method is removed by applying a second order...
Global Finite Time Stabilization of a Class of Uncertain MIMO Nonlinear Systems
, Article Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME ; Volume 138, Issue 2 , 2016 ; 00220434 (ISSN) ; Moravej Khorasani, M ; Haeri, M ; Sharif University of Technology
American Society of Mechanical Engineers (ASME)
2016
Abstract
It is aimed to obtain global finite time stabilization of a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in the presence of bounded disturbances by applying nonsingular terminal sliding mode controllers. The considered nonlinear systems consist of double integrator subsystems which interact with each other. In the proposed methods, new terminal sliding surfaces are introduced along with design of proper control inputs. The terminal sliding surfaces are defined such that the global finite time stability of sliding mode dynamic is attained. The control inputs are designed to steer the states into sliding motion within finite time and retain them on the terminal sliding...
Finite time control of robotic manipulators with position output feedback
, Article International Journal of Robust and Nonlinear Control ; Volume 27, Issue 16 , 2017 , Pages 2982-2999 ; 10498923 (ISSN) ; Moravej Khorasani, M ; Haeri, M ; Sharif University of Technology
2017
Abstract
This paper deals with the robust finite time tracking of desired trajectories for a wide group of robotic manipulators in spite of unknown disturbances, uncertainties, and saturations of actuators while only manipulator's positions are available and its velocities are not measurable physically. A new form of chattering-free second order fast nonsingular terminal sliding mode control scheme is introduced to design input torques for fulfilling the determined tracking objective in the adjustable total finite settling time. The proposed control algorithm is incorporated with two nonlinear observers to estimate disturbances and velocities of joints within finite settling times. The global finite...
Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers
, Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 323-334 ; 1738494X (ISSN) ; Sarrafan, A ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
2012
Abstract
A novel intelligent semi-active control system for an eleven degrees of freedom passenger car's suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network...
Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend
, Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
2012
Abstract
Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the...
A comparative study of the performance of a SI engine fuelled by natural gas as alternative fuel by thermodynamic simulation
, Article 2009 ASME Internal Combustion Engine Division Fall Technical Conference, ICEF 2009, Lucerne, 27 September 2009 through 30 September 2009 ; 2009 , Pages 49-57 ; 9780791843635 (ISBN) ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
American Society of Mechanical Engineers (ASME)
2009
Abstract
With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1-5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost...
Analytical and experimental analyses of nonlinear vibrations in a rotary inverted pendulum
, Article Nonlinear Dynamics ; Volume 107, Issue 3 , 2022 , Pages 1887-1902 ; 0924090X (ISSN) ; Pasharavesh, A ; Khayyat, A. A. A ; Sharif University of Technology
Springer Science and Business Media B.V
2022
Abstract
Gaining insight into possible vibratory responses of dynamical systems around their stable equilibria is an essential step, which must be taken before their design and application. The results of such a study can significantly help prevent instability in closed-loop stabilized systems by avoiding the excitation of the system in the neighborhood of its resonance. This paper investigates nonlinear oscillations of a rotary inverted pendulum (RIP) with a full-state feedback controller. Lagrange’s equations are employed to derive an accurate 2-DoF mathematical model, whose parameter values are extracted by both the measurement and 3D modeling of the real system components. Although the governing...
A suction-controlled ring device to measure the coefficient of lateral soil pressure in unsaturated soils
, Article Geotechnical Testing Journal ; Volume 44, Issue 1 , 2020 ; Garakani, A. A ; Golshani, A ; Mirzaii, A ; Sharif University of Technology
ASTM International
2020
Abstract
A suction-controlled ring device has been developed to continuously measure the coefficient of lateral soil pressure in deformable unsaturated soil samples from the at-rest to the active condition under application of increasing vertical pressure and controlled matric suction. The device incorporates a thin aluminum specimen ring equipped with horizontal strain gages for recording the lateral soil strains. In addition, a sensor recording water volume changes is utilized to continuously monitor the degree of saturation of the soil sample during tests. The matric suction within the soil texture is controlled using the axis translation technique. In order to verify the performance of the ring...
Gum tragacanth gels as a new supporting matrix for immobilization of whole-cell
, Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 24, Issue 4 , 2005 , Pages 1-7 ; 10219986 (ISSN) ; Vaziri, A ; Seifkordi, A. A ; Kheirolomoom, A ; Sharif University of Technology
2005
Abstract
We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems. The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicillin G acylase (PGA) activity. The results show that GT beads can not only serve as a proper matrix for immobilization, but show enhanced hydrolysis rate and stability compared to other immobilization systems used for this reaction. This signifies the potential of GT as a biocompatible matrix for...
True Class-E Design For Inductive Coupling Wireless Power Transfer Applications
, Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 864-868 ; 9781665480871 (ISBN) ; Safarian, A ; Fotowat Ahmady, A ; Sharif University of Technology
Institute of Electrical and Electronics Engineers Inc
2022
Abstract
The Class-E power amplifier has been widely studied and formulated in the literature. Although the majority of reported inductive coupling wireless power transfer (WPT) systems use a class-E power amplifier for driving the primary coil, still there is a lack of a comprehensive study on class-E circuit dedicated to WPT, providing a set of closed form design equations for proper class-E operation. This paper presents the required design equations needed to design a 'true' class-E circuit for WPT applications. Equations for the series-tuned secondary coil WPT system are presented, as well as two different design procedures for the parallel-tuned secondary coil. The derived equations have been...
Crashworthiness determination of side doors and B pillar of a vehicle subjected to pole side impact
, Article Applied Mechanics and Materials ; Vol. 663, issue , 2014 , p. 552-556 ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2014
Abstract
Pole Side Impact Tes is one out of three crash tests described by Euro NCAP standard for star rating of a vehicle and is required for assessing the Adult Occupant Protection. In this paper the goal is to determine the crashworthiness of side doors and B pillar in a Pole Side Impact Test based on Euro New Car Assessment Program (Euro-NCAP) using computer and simulation method. In this matter, a vehicle model has been prepared and meshed using Hypermesh and CATIA. The velocity of 29 km/h has been assigned to the vehicle which was on top of a cart while the pole has been assigned as a rigid static object based on Euro NCAP requirements specifically. Results show that different amounts of energy...
Investigation of Thickness Influences On Energy Absorption For Side Doors And B Pillar In Euro NCAP Pole Side Impact Test
, Article Applied Mechanics and Materials ; Vol. 663, issue , Oct , 2014 , p. 585-589 ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2014
Abstract
To assess a car under the Euro New Car Assessment Program (Euro-NCAP), Adult Occupant Protection is one out of three parameters which need to be calculated with a weight factor of 50% while the other parameters, Child Occupant Protection and Pedestrian Occupant Protection, have a weight factor of 20%. The Pole Side Impact Test, beside two other tests, Side and Front Impact, is also required to calculate the Adult Occupant Protection. It shows how important the Pole Side Impact Test is and what an effective role it has in the car rating assessment. In this paper, the objective is to evaluate the effect of thickness on the energy absorbed by the side doors and the B pillar and its...
Crashworthiness determination for front and rear doors and B pillar subjected to side impact crash by a mobile deformable barrier
, Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 392-395 ; 19366612 (ISSN) ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
2013
Abstract
In Euro NCAP standard, adult protection is one of the most important rating scores with 50% weight factor while child protection and pedestrian protection are accounted into consideration with 20% weight factor. For adult protection testing, three tests are required to perform: (1) side impact, (2) pole impact, (3) front impact. In the side impact test, dummy's head, chest, shoulder, thorax, ribs, abdomen, pelvic and femur must be studied to evaluate the rating score. Crashworthiness of a car during side impact can describe the score rated for that car. In this paper the goal is to determine the crashworthiness of side doors and B-pillar in side impact crash est by simulation using LS DYNA...