Loading...
Search for: adl--morteza
0.115 seconds

    The effect of calcite cementation on the mechanical behavior of gravely sands

    , Article 14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 23 May 2011 through 27 May 2011, Hong Kong ; 2011 Adl, M. R ; Sharif University of Technology
    2011
    Abstract
    The behavior of a cemented gravely sand is studied using triaxial tests. Undrained tests were performed on saturated specimens, and stress-strain characteristics of the soil, along with volumetric and pore pressure changes, were recognized. Artificially cemented samples are prepared using calcite crystallization as the cementing agent in different percentages. The tests were done in usual range of confining pressures, from 50 to 1200 kPa. The results shows that dilation occurs even at highest confining pressure and least cement content. Also the friction angle of soils increases slightly with cement content, but cohesion intercept increasing is more noticeable  

    Ant colony algorithm for the shortest loop design problem [electronic resource]

    , Article Computers and Industrial Engineering, Elsevier ; Volume 50, Issue 4, August 2006, Pages 358–366 Eshghi, K. (Kourosh) ; Kazemi, Morteza ; Sharif University of Technology
    Abstract
    In this paper, a new algorithm for solving the shortest loop design problem is presented. The shortest loop design problem is to find the shortest loop for an automated guided vehicle covering at least one edge of each department of a block layout. In this paper, first it is shown that this problem can be represented as a graph model. The properties of the presented model enable us to design a meta-heuristic based on ant colony system algorithm for solving the shortest loop design problem. Computational results show the efficiency of our algorithm in compare to the other techniques  

    The Static Behavior of Calcite Cemented Gravely Sand – Tehran Alluvium Case Study

    , M.Sc. Thesis Sharif University of Technology Adl, Mahmoud Reza (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    An understanding of the effect of degree of cementation on static behavior of cemented soils in becoming increasingly important in design and analysis of geotechnical engineering problems. Naturally cemented coarse-grained soils are widely present in many parts of the world. Misunderstanding of the behavior of such soils could lead to under or overestimate of the soil parameters. Previous studies conducted by Prof. Haeri and his co-workers show that most of the alluvial deposit of Tehran, the capital city of Iran. The amount and characteristics of the cementation of the deposit varies in different parts from highly cemented in the north to non-cemented in the south. This deposit consists of... 

    Inverse Problem Of Pyroshock Simulation Apparatus

    , M.Sc. Thesis Sharif University of Technology Adl, Morteza (Author) ; Saadat Foumani, Mahmood (Supervisor)
    Abstract
    One of the important experiments on satellites and their components is testing of their resistance to shock wave known to pyroshock. Pyroshock is transient response of a structure to a high frequency and high acceleration shock wave that is created by the action of a member of pyrotechnics in the satellite structure. This research is for design, construction and calibration of a pyroshock simulator apparatus which is done with specific requirements and aims. For this purpose, in first step an experimental test is done and validation of computer simulation is obtained by using results of test. By use of computer simulation tool, new design is presented. After constructing the apparatus and... 

    Effect of intervertebral translational flexibilities on estimations of trunk muscle forces, kinematics, loads, and stability

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 18, Issue 16 , Sep , 2015 , Pages 1760-1767 ; 10255842 (ISSN) Ghezelbash, F ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Due to the complexity of the human spinal motion segments, the intervertebral joints are often simulated in the musculoskeletal trunk models as pivots thus allowing no translational degrees of freedom (DOFs). This work aims to investigate, for the first time, the effect of such widely used assumption on trunk muscle forces, spinal loads, kinematics, and stability during a number of static activities. To address this, the shear deformable beam elements used in our nonlinear finite element (OFE) musculoskeletal model of the trunk were either substantially stiffened in translational directions (SFE model) or replaced by hinge joints interconnected through rotational springs (HFE model). Results... 

    Effect of body weight on spinal loads in various activities: A personalized biomechanical modeling approach

    , Article Journal of Biomechanics ; Volume 48, Issue 2 , 2015 , Pages 276-282 ; 00219290 (ISSN) Hajihosseinali, M ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Epidemiological studies are divided over the causative role of body weight (BW) in low back pain. Biomechanical modeling is a valuable approach to examine the effect of changes in BW on spinal loads and risk of back pain. Changes in BW have not been properly simulated by previous models as associated alterations in model inputs on the musculature and moment arm of gravity loads have been neglected. A detailed, multi-joint, scalable model of the thoracolumbar spine is used to study the effect of BW (varying at five levels, i.e., 51, 68, 85, 102, and 119kg) on the L5-S1 spinal loads during various static symmetric activities while scaling moment arms and physiological cross-sectional areas of... 

    Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches

    , Article Medical Engineering and Physics ; Volume 37, Issue 8 , 2015 , Pages 792-800 ; 13504533 (ISSN) Mohammadi, Y ; Arjmand, N ; Shirazi-Adl, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Various hybrid EMG-assisted optimization (EMGAO) approaches are commonly used to estimate muscle forces and joint loads of human musculoskeletal systems. Use of EMG data and optimization enables the EMGAO models to account for inter- and intra-individual variations in muscle recruitments while satisfying equilibrium requirements. Due to implications in ergonomics/prevention and rehabilitation/treatment managements of low-back disorders, there is a need to evaluate existing approaches. The present study aimed to compare predictions of three different EMGAO and one stability-based optimization (OPT) approaches for trunk muscle forces, spinal loads, and stability. Identical measured... 

    Transient analysis of trunk response in sudden release loading using kinematics-driven finite element model

    , Article Clinical Biomechanics ; Volume 24, Issue 4 , 2009 , Pages 341-347 ; 02680033 (ISSN) Bazrgari, B ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2009
    Abstract
    Background: Sudden trunk perturbations occur in various occupational and sport activities. Despite numerous measurement studies, no comprehensive modeling simulations have yet been attempted to investigate trunk biodynamics under sudden loading/unloading. Methods: Dynamic kinematics-driven approach was used to evaluate the temporal variation of trunk muscle forces, internal loads and stability before and after a sudden release of a posterior horizontal load. Measured post-disturbance trunk kinematics, as input, and muscle electromyography (EMG) activities, for qualitative validation, were considered. Findings: Computed agonist and antagonist muscle forces before and after release agreed well... 

    Trunk biomechanical models based on equilibrium at a single-level violate equilibrium at other levels

    , Article European Spine Journal ; Volume 16, Issue 5 , 2007 , Pages 701-709 ; 09406719 (ISSN) Arjmand, N ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2007
    Abstract
    Accurate estimation of muscle forces in various occupational tasks is critical for a reliable evaluation of spinal loads and subsequent assessment of risk of injury and management of back disorders. The majority of biomechanical models of multi-segmental spine estimate muscle forces and spinal loads based on the balance of net moments at a single level with no consideration for the equilibrium at remaining levels. This work aimed to quantify the extent of equilibrium violation and alterations in estimations when such models are performed at different levels. Results are compared with those of kinematics-driven model that satisfies equilibrium at all levels and EMG data. Regardless of the... 

    Control of different FEM based musculoskeletal models of human lumbar spine under different loading conditions using optimization method

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Kiapour, A ; Parnianpour, M ; Shirazi Adl, A ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    In this study the effects of using different musculoskeletal models on load-displacement behavior of FE models of the human lumbar spine under external loads and moments have been analyzed in terms of equilibrium and clinical stability. A simplified and a complex architecture of muscles have been integrated to FE based models of lumbar spine and were loaded to simulate the load carrying behavior of human lumbar spine in flexion, extension and lateral bending. The displacement values as well as muscle forces have been computed and compared in both cases using optimization methods with different cost functions. The models showed similar kinematics in pure flexion but the simplified model... 

    Can simple trunk muscle models balance and stabilize lumbar spine during support of symmetric and asymmetric loads? a FE model study

    , Article 2007 ASME Summer Bioengineering Conference, SBC 2007, Keystone, CO, 20 June 2007 through 24 June 2007 ; 2007 , Pages 443-444 ; 0791847985 (ISBN); 9780791847985 (ISBN) Kiapour, A ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2007

    Trunk biomechanics during maximum isometric axial torque exertions in upright standing

    , Article Clinical Biomechanics ; Volume 23, Issue 8 , 2008 , Pages 969-978 ; 02680033 (ISSN) Arjmand, N ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2008
    Abstract
    Background: Activities involving axial trunk rotations/moments are common and are considered as risk factors for low back disorders. Previous biomechanical models have failed to accurately estimate the trunk maximal axial torque exertion. Moreover, the trunk stability under maximal torque exertions has not been investigated. Methods: A nonlinear thoracolumbar finite element model along with the Kinematics-driven approach is used to study biomechanics of maximal axial torque generation during upright standing posture. Detailed anatomy of trunk muscles with six distinct fascicles for each abdominal oblique muscle on each side is considered. While simulating an in vivo study of maximal axial... 

    Relative efficiency of abdominal muscles in spine stability

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 11, Issue 3 , 2008 , Pages 291-299 ; 10255842 (ISSN) Arjmand, N ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2008
    Abstract
    Using an iterative kinematics-driven nonlinear finite element model, relative efficiency of individual abdominal muscles in spinal stability in upright standing posture was investigated. Effect of load height on stability and muscle activities was also computed under different coactivity levels in abdominal muscles. The internal oblique was the most efficient muscle (compared with the external oblique and rectus abdominus) in providing stability while generating smaller spinal loads with lower fatigue rate of muscles. As the weight was held higher, stability deteriorated requiring additional flexor-extensor activities. The stabilising efficacy of abdominal muscles diminished at higher... 

    Biomechanical effects of lumbar fusion surgery on adjacent segments using musculoskeletal models of the intact, degenerated and fused spine

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Ebrahimkhani, M ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Adjacent segment disorders are prevalent in patients following a spinal fusion surgery. Postoperative alterations in the adjacent segment biomechanics play a role in the etiology of these conditions. While experimental approaches fail to directly quantify spinal loads, previous modeling studies have numerous shortcomings when simulating the complex structures of the spine and the pre/postoperative mechanobiology of the patient. The biomechanical effects of the L4–L5 fusion surgery on muscle forces and adjacent segment kinetics (compression, shear, and moment) were investigated using a validated musculoskeletal model. The model was driven by in vivo kinematics for both preoperative (intact or... 

    Adjacent segments biomechanics following lumbar fusion surgery: a musculoskeletal finite element model study

    , Article European Spine Journal ; Volume 31, Issue 7 , 2022 , Pages 1630-1639 ; 09406719 (ISSN) Ebrahimkhani, M ; Arjmand, N ; Shirazi-Adl, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Purpose: This study exploits a novel musculoskeletal finite element (MS-FE) spine model to evaluate the post-fusion (L4–L5) alterations in adjacent segment kinetics. Methods: Unlike the existing MS models with idealized representation of spinal joints, this model predicts stress/strain distributions in all passive tissues while organically coupled to a MS model. This generic (in terms of musculature and material properties) model uses population-based in vivo vertebral sagittal rotations, gravity loads, and an optimization algorithm to calculate muscle forces. Simulations represent individuals with an intact L4–L5, a preoperative severely degenerated L4–L5 (by reducing the disc height by ~... 

    Love Wave Propagation in a Functionally Graded Magneto-Electro-Elastic Half-Space with Quadratic Variations

    , M.Sc. Thesis Sharif University of Technology Nobahar, Masoud (Author) ; Eskandari, Morteza (Supervisor)
    Abstract
    The propagation behavior of Love wave in functionally graded magneto-electro-elastic half-spaces with a quadratic variation is addressed. The magneto-electromechanical coupling factor, the dispersion relations, electric potential, magnetic potential and displacement are obtained analytically for both magneto-electrically open and short conditions. The effect of gradient coefficient on phase velocity, group velocity and magneto-electromechanical coupling factor are plotted and discussed. Research on the wave propagation in magneto-electro-elastic materials is still very limited. This work provides us with a theoretical foundation to design and practically apply SAW devices with high... 

    Modeling Reaction and Distribution of Water in Nanopores of the Cathode Catalyst Layer of PEM Fuel Cell

    , M.Sc. Thesis Sharif University of Technology Nushak, Fatemeh (Author) ; baghalha, morteza (Supervisor)
    Abstract
    In the proton exchange membrane fuel cells (PEM, the produced water would be divided into two phases of vapor and liquid. distribution of both liquid and vapor phases in different cell layers affects the performance, the efficiency and the life of a fuel cell significantly. Moreover, Nano pores of the cathode catalyst layer are involved with some phenomena such as electrochemical reaction kinetics, heat and mass transfer and interface phase change. One of the most important problems in the performance of fuel cells is distribution of liquid water in the porous areas. Water flooding in fuel cells causes to delay in oxygen transport to active sites in the catalyst layer because the pores of... 

    Elastic Analysis of a Surface Stiffened Transversely Isotropic Half-space Under a Buried Horizontal Point Load

    , M.Sc. Thesis Sharif University of Technology Naghib, Hamed (Author) ; Eskandari, Morteza (Supervisor)
    Abstract
    In this study, the interaction between thin plate completely bonded to the transversely isotropic halfspace and a concentrated force applied horizontally (Mindlin-type force) are considered. This problem has been solved analytically. This problem is used as sample for thin solid films and surface coating technology, where the surface of solid is covered by thethin plate for increasing its stiffness. Moreover, this problem is a good sample when homogenous solid is subjected to contact loading and can be seen that mechanical properties of material which is near the solid surface varies; consequently, a two-phase solid is created.Because of the influence of noted inhomogeneity, solid is... 

    Modeling and Simulation of the Catalyst Regeneration Process of FCC Unit of Abadan Refinery

    , M.Sc. Thesis Sharif University of Technology Loni, Zahra (Author) ; Baghalha, Morteza (Supervisor)
    Abstract
    Hydrodynamics plays a crucial role in defining the performance of fluidized beds. The numerical simulation of fluidized bed is very important in the prediction of its behaviour. From this point of view, in the present study a dynamic two dimensioanl model is developed for the modeling of regenerator system of a UOP fluid catalytic cracking (FCC) unit of Abadan refinery with a high-efficiency regenerator. Of the various modeling and simulation techniques, computational fluid dynamics (CFD) is employed in this thesis. Effects of gas velocity, the transient local solid volume fraction, pressure drop for gas and solid phase, solid holdup distribution and solid circulation pattern have been... 

    Database Schema Extraction Prevention Through DBMS Error Handling

    , M.Sc. Thesis Sharif University of Technology Naghdi, Sepideh (Author) ; Amini, Morteza (Supervisor)
    Abstract
    Nowadays large volume of sensitive data of organizations are stored in the databases. Thus, databases are attractive to the attackers to execute different types of attacks with different purposes. The useful information that attackers try to achieve in the preliminary steps of the attacks against the databases, is the database structure or schema. One of the popular approach to extract the schema of a database is to analyze the returned error messages from its DBMS. Hence, a solution to prevent schema disclosure via the error messages is customizing and modifying them. To achieve this goal, in this thesis, we propose a framework to handle and customize the error messages automatically and...