Loading...
Search for: aghababaie-khouzani--zahra
0.101 seconds

    Experimental Study of Silver Based Nanostructures Biocompatibility for Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Aghababaie Khouzani, Zahra (Author) ; Vossoughi, Manouchehr (Supervisor) ; Yaghmaei, Soheyla (Supervisor)
    Abstract
    Acceleration of healing process for crucial wounds has been remained a challenging issue and it is critical to improve treatments against infection during wound healing period. Among various antimicrobial agents, silver components has been extensively since they are resistant against a wide range of bacteria. In this study, we developed electrospun mats composed of Polycaprolactone (PCL) and Polyvinyl alcohol (PVA) loaded with major silver components using co-electrospinnig method. Chitosan- Ag nanoparticles was synthesized using chitosan via heating prior to electrospinning. Various amounts of Silver components including Ag+, Silversulfadiazine (SSD) and Chitosan- Ag NPs were added to PVA... 

    Improvement of DFIG Under Unbalanced Voltage Condition

    , M.Sc. Thesis Sharif University of Technology Karimi Khouzani, Hadi (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    In this thesis, performance of doubly fed induction generators in wind turbine, under stator unbalanced voltage condition has been studied. Therefore, beside of presenting related equations and models for DFIG, drawbacks of DFIG performance under unbalanced voltage condition on variables such as electric torque, active and reactive stator power and stator current have been shown. Then, controller have been designed in the way that can eliminate electric torque oscillation, active power oscillation, negative sequences of stator current and rotor current. The controller is designed base on decoupling sequences in synchronous reference and stator voltage orientation method(SVO) that consist of... 

    Design of a Scalable Optical Network-on-Chip by Reducing Role of Electrical Transactions

    , M.Sc. Thesis Sharif University of Technology Aghaei Khouzani, Hoda (Author) ; Hesabi, Shahin (Supervisor)
    Abstract
    As the number of processing cores on a single chip continues to grow, the need for a high bandwidth, low power communication structure, will be the most important requirement of the next generation chip multiprocessors. Today, a major part of power consumption in multicore architectures belongs to interconnects. Due to these facts, reducing power consumption, as well as supporting high performance, is of major concern in these architectures. Optical interconnects have the potential to replace electrical wires to solve the bottleneck of communications in integrated circuits. Various routers and architectures with different points of view, have been recently designed considering existing... 

    Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres

    , Article International Journal of Pharmaceutics ; Volume 537, Issue 1-2 , 2018 , Pages 278-289 ; 03785173 (ISSN) Shamloo, A ; Sarmadi, M ; Aghababaie, Z ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Herein, a hybrid hydrogel/microsphere system is introduced for accelerated wound healing by sustained release of basic fibroblast growth factor (bFGF). The hydrogel is composed of a mixture of PVA, gelatin and chitosan. The double-emulsion-solvent-evaporation method was utilized to obtain microspheres composed of PCL, as the organic phase, and PVA, as the aqueous phase. Subsequently, various in-vitro and in-vivo assays were performed to characterize the system. BSA was used to optimize the release mechanism, and encapsulation efficiency in microspheres, where a combination of 3% (w/v) PCL and 1% (w/v) PVA was found to be the optimum microsphere sample. Incorporation of microspheres within... 

    Fully contention-free optical NoC based on wavelenght routing

    , Article CADS 2012 - 16th CSI International Symposium on Computer Architecture and Digital Systems ; 2012 , Pages 81-86 ; 9781467314824 (ISBN) Khouzani, H. A ; Koohi, S ; Hessabi, S ; Sharif University of Technology
    2012
    Abstract
    This paper proposes a new optical network-on-chip which is scalable, low-power and high-performance. We design a centralized all-optical router which takes advantage of wavelength based structures. Our design achieves fully contention-free operation by utilizing path-based algorithms. By merging primary photonic switches and utilizing WDM technique, we mitigated the number of basic switching elements and thus reduced the consumed power down to 47.37% in comparison with the most prominent structure introduced for wavelength routing; i.e., the λ-Router. We obtained this superiority while maintaining the performance as high as the previous structures, which yields in energy savings. Moreover,... 

    A secure architecture for mobility management in heterogeneous networks in IMS

    , Article 2009 1st International Conference on Networked Digital Technologies, NDT 2009, Ostrava, 28 July 2009 through 31 July 2009 ; 2009 , Pages 496-499 ; 9781424446155 (ISBN) Hoseini, F. S ; Aghaie Khouzani, H ; Mozayani, N ; Sharif University of Technology
    2009
    Abstract
    The IP Multimedia Subsystem is a basis for a significant new architecture which offers network operators the opportunity to expand their services, integrating voice and multimedia communications and delivering them into new environments with new purposes. The IMS is an overlay network on top of IP that uses SIP as the primary signaling mechanism. Using IMS bears several new security challenges. In this paper we provide an overview of IMS and its architecture. Then we represent a secure model to overcome some of IMS security challenges. ©2009 IEEE  

    Improving the Design of Menus in User Interfaces

    , M.Sc. Thesis Sharif University of Technology Kargaran Khouzani, Amir Hossein (Author) ; Heydarnoori, Abbas (Supervisor)
    Abstract
    The design and development process of menu systems has always been a focus of researchers and engineers in the fields of software engineering and human-computer interaction. Considering the large and complex nature of the design space, it is nec- essary to provide automatic methods that aid designers during the design process. In this study, natural language processing is used to investigate the semantic relationship between menu system commands. Users expect related commands to be conveniently located next to each other, and a properly designed interface satisfies this need. As a result of this research, a fast-text-based model is developed that uses the data of past menu systems. In a... 

    Mesoporous silica nanoparticles (MCM-41) coated PEGylated chitosan as a pH-Responsive nanocarrier for triggered release of erythromycin [electronic resource]

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2014, Volume 63, Issue 13, Pages 692-697 Pourjavadi, A. (Ali) ; Mazaheri Tehrani, Zahra ; Sharif University of Technology
    Abstract
    A pH-responsive drug delivery system based on core shell structure of mesoporous silica nanoparticle (MSN) and chitosan-PEG copolymer was prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and high-resolution transmission microscope (HR-TEM) techniques. In order to improve compatibility MSN and drug, mesoporous nanosilica was modified by 3-aminopropyl triethoxysilane. The release of erythromycin (a macrolide antibiotic) as a model drug was investigated in two pHs, 7.4 and 5.5  

    A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation

    , Article International Journal of Pharmaceutics ; Volume 564 , 2019 , Pages 350-358 ; 03785173 (ISSN) Mohseni, M ; Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Abdi, S ; Moravvej, H ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the current study, two series of antimicrobial dressings conjugated with silver sulfadiazine (SSD) and silver nanoparticles (AgNPs) were developed and evaluated for chronic wound healing. Highly porous polycaprolactone (PCL)/polyvinyl alcohol (PVA) nanofibers were loaded with different concentrations of SSD or AgNPs and compared comprehensively in vitro and in vivo. SSD and AgNPs indicated a strong and equal antimicrobial activity against S. aureus. However, SSD had more toxicity against fibroblast cells over one week in vitro culture. An in vivo model of wound healing on male Wistar rats was developed with a full thickness wound. All the wound dressings indicated enough flexibility and... 

    Using Nonlinear Effects of Light for Optical Signal Processing

    , M.Sc. Thesis Sharif University of Technology Shatery, Farshid (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Ultrafast signal processing in time-domain with high resolution and reconfigura-bility is a challenging task. This paper, for the first time, introduces a time-varying metasurface consisting of graphene microribbon array for implementing time-lens in the terahertz domain. Given that the surface conductivity of graphene is proportional to the Fermi energy level in the THz regime, it is possible to change the phase property of the incident electromagnetic pulse by changing the Fermi level while the Fermi level itself is a function of voltage. Upon this fact, a quadratic temporal phase modulator, namely time-lens has been realized. This phase modulation is applied to the impinging signal in the... 

    Theoretical and Computational Investigation of Quantum Plasmonic Properties of Nanocluster Dimers

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Erfan (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    In today's era, metal nanoparticles play an important role in technologies emerging from different sciences, such as chemistry, physics, optics, material science, due to their unique characteristics. In the development of nanooptics science, it can be said that metal nanoparticles play an important role. The ability of conductive electrons collective oscillation causes surface charge density fluctuations in nanoparticles, this phenomenon is known as surface plasmons. Surface plasmons are surprisingly coupled with light and cause the significant increase in the intensity of optical fields induced in nanoparticles. Therefore, with the presence of localized surface plasmons or plasmon... 

    Theoretical Investigation of Ab-initio MD Approach to Increase the Efficiency and Accuracy of VCD Spectrum Calculation

    , M.Sc. Thesis Sharif University of Technology Hadi, Hossein (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    Understanding of the Molecules is the main purpose of the chemistry. Ab-initio molecular dynamics (AIMD) as a branch of the computational chemistry, tries to give us a deep comprehension of the molecule, and its chemical, physical and optical activities. This comprehension, relies on the accuracy of quantum mechanics, in addition to the speed of the classical mechanics. The mixing of the quantum mechanics and the classical mechanics could simulate activities of the atoms in the time-domain, provided the mixing is done with precaution. This, in turn, helps us to forecast the response of a molecule in different situations, and also translating the macroscopic phenomena in a nanoscopic... 

    Investigation of Plasmonic Excitation in Carbonic Nanostructures Within Near-IR

    , M.Sc. Thesis Sharif University of Technology Madadi, Mahkam (Author) ; Jamshidi, Zahra (Supervisor)
    Abstract
    To date, the plasmonic properties of many metallic and semi-conducting materials have been investigated and used in various industries. One of the plasmonic material categories that have always been considered is polycyclic aromatic hydrocarbon or PAH, whose plasmonic resonance energy depends on the charge state of the molecule. In this regard, it is easy to change the plasmonic resonance energy via changing the induced charge, which is a unique feature of the mentioned materials. In addition, plasmonic structures with excitations in the infrared region are able to enhance the vibration intensity of absorbed molecules by increasing the electric field around themselves. Therefore, they have... 

    Using Simulation-Optimization Approach for Fire Station Location and Vehicle Assignment Problem: a Case Study in Tehran, Iran

    , M.Sc. Thesis Sharif University of Technology Pirmohammadi, Ali (Author) ; Amini, Zahra (Supervisor)
    Abstract
    In this research, the problem of locating fire stations and allocating equipment has been studied and a simulation-optimization approach has been presented to solve the problem. The mathematical models of this research were developed based on the idea of the randomness of the covered demand and the maximum expected coverage model. In these models, the issue of non-availability of equipment to cover accidents, the random nature of accidents, various fire incidents and the equipment needed to cover them are considered. Two mathematical models with deterministic and non-deterministic approach with different scenarios for demand are proposed. The non-deterministic model is developed with the aim... 

    Introducing An Integrated Framework For Solving The Fleet Planning Problem Using A Simulation-Optimization Approach

    , M.Sc. Thesis Sharif University of Technology Sahebi, Armin (Author) ; Amini, Zahra (Supervisor)
    Abstract
    One of the main concerns of industrial companies’ managers is providing an efficient logistics system. To achieve an efficient logistics system, the fleet planning problem is studied by many researchers in recent years. This problem consists of multiple sub-problems at three levels: operational, tactical, and strategic. These sub-problems are closely related to each other and need to be studied and addressed in an integrated manner. In this research, an attempt is made to provide an integrated framework to solve the vehicle routing problem (operational), outsourcing problem (tactical), and fleet composition problem (strategic). These problems have various uncertainties, including customer... 

    Analytical Modelling and Optimization of Disk Type, Slot Less Resolver

    , M.Sc. Thesis Sharif University of Technology Moheyseni, Atefeh (Author) ; Nasiri Gheidari, Zahra (Supervisor)
    Abstract
    Resolvers, due to their robust structure, are widely used in automation systems. Among the types of resolvers, the accuracy of the Wound Rotor (WR) resolver in the occurrence of common mechanical errors is higher than other types of resolvers. therefore, in this thesis, an AFWRR is studied to improve the performance. Increasing the number of poles in WR resolvers is a good solution for increasing the accuracy of these electromagnetic position sensors. However, high-speed WR resolvers due to employing fractional slot windings suffer from rich sub-harmonics in the induced voltages. A common solution for suppressing the undesirable sub-harmonics is using multi-layer winding with appropriate... 

    A Survey on Searchable Symmetric Encryption Schemes

    , M.Sc. Thesis Sharif University of Technology Sajadieh, Zahra Sadat (Author) ; Khazaei, Shahram (Supervisor)
    Abstract
    Using “Searchable Encryption” enables us to encrypt the data, while preserving the possibility of running search queries. One of the most important applications of the mentioned is in Cloud Storage. As users do not trust the Cloud space, they are not inclined to store their data on the Could. The solution to this problem is of course, Cryptography. However, ordinary Cryptography methods, eliminate the data’s searchability. Hence, we need encryption schemes that code the data while retaining their searchability. So far, various schemes has been proposed that differ in their performance, security level, and usage. In this thesis, we aim to discuss and analyze these methods  

    Temporal Depth Imaging Based on Dispersion

    , M.Sc. Thesis Sharif University of Technology Behzadfar, Shiva (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In this thesis, the aim is designing an optical temporal imaging system. In recent years, due to many applications, including the receipt of high-rate data by slow receivers and compensation of dispersion in telecommunication systems, researchers have considered the topic of temporal imaging. This field of research is based on dispersion, electro-optical modulators or time lenses and space-time theory. By modeling dispersion properties as a depth dimension and taking ideas from three-dimensional spatial imaging systems we intended to increase the temporal resolution and depth of focus of the structure. We also present a novel technique for multiplexing and demultiplexing telecommunication... 

    Time Domain Optical Signal Processing Based on the Duality Between Dispersion and Diffraction

    , M.Sc. Thesis Sharif University of Technology Eksiri, Fatemeh (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    In the last decades, due to the growing demand of transferring information with high transmission rates, the complexity and development of telecommunication and optical systems is remarkable. Researchers around the world attempt to explore extraordinary potential of light to process information. In the mid-19th century, scientists discovered a mathematical symmetry between the spatial and temporal optics fields, which originated from the similarity of equations governing the paraxial diffraction of beams and the dispersion of narrow-band pulses known as space– time duality in scientific texts. This new approach provides more advanced and potent methods to temporal processing and... 

    Improving the Stability of an Urban Traffic Network with Limited Data by Using Percolation Theory and Dynamic Clustering

    , M.Sc. Thesis Sharif University of Technology Hassanzadeh, Ehsan (Author) ; Amini, Zahra (Supervisor)
    Abstract
    One of the most vital aspects of understanding the traffic phenomenon is scrutinizing the traffic transition status, such as the transition from free flow to congestion. The Percolation Theory is a renowned theory focusing on analyzing various network types to detect the critical zones, which are the zones including links that are important to control to improve stability. By calculating the quality indices of network links, the Percolation Theory can simulate the traffic percolation propagation in the network and determine possible critical zones for further analysis. Most studies in this field assume access to data of several traffic parameters for the entire transportation network, such...