Loading...
Search for:
aghaee--zahra
0.138 seconds
Total 147 records
Structural Study of Vitamin B1, B2 and B6 by NMR Spectroscopy and ab-initio Methods
, M.Sc. Thesis Sharif University of Technology ; Tafazzoli, Mohsen (Supervisor)
Abstract
The structure and energy of vitamin B1 (Thiamine), vitamin B2 (Riboflavin) and vitamin B6 (Pyridoxine) have been studied employing quantum mechanical calculation, DFT methods at B3LYP level using 6-311+G* basis set. Values of the coupling constants involving carbon-hydrogen and hydrogen-hydrogen on the torsion angle α and β were theoretically calculated. All Karplus equations which represent the correlation between coupling constants 1JCH, 2JHH, 2JCH, 3JHH, 3JCH and proper dihedral angle have been yielded. The effect of three solvents, water, ethanol and carbon¬ tetrachloride with different polarity on coupling constants, energy and structural parameters were calculated employing PCM model....
Multiverse and the Fine-Tuning of the Constants of Nature
, M.Sc. Thesis Sharif University of Technology ; Golshani, Mehdi (Supervisor)
Abstract
In recent decades, the idea of multiverse has been raised in several areas of physics for different reasons. One of the interpretations of quantum mechanics, the inflation theory in cosmology and string theory in fundamental physics have led to the multiverse idea. On the other hand, after the problem of fine-tuning of the constants of nature became a hot topic in recent decades, physicists have tried to find a way to explain this puzzle. One of the most important approaches that have been suggested by some physicists, as a scientific explanation for this problem, is the idea of multiverse and they are even willing to set aside the principle of observability to confirm physical...
PLC Implementation of Fractional Order Controllers
, M.Sc. Thesis Sharif University of Technology ; Tavazoei, Mohammad Saleh (Supervisor)
Abstract
In this thesis, various fractional order controllers (FOCs), e.g., FO-PID, FO-TID, CRONE and FO-Lead/Lag, are implemented using PLC. For this purpose first, several methods are used to approximate the differentiator and integral operators. Based on these methods, the equivalent rational transfer functions of the fractional order controllers are obtained. Then, using STEP7 software, the FOCs are implemented in Siemens PLC. Moreover, to facilitate the use of the implemented FOCs in the industry and to take full advantage of the controllers, WinCC software as an interface between human and machine (HMI) is used. The WinCC software enables the operator to access the PLC through a computer (PC)...
Real Time Trend Forecasting of Noisy Signal Using Deep Recurrent LSTM Network
, M.Sc. Thesis Sharif University of Technology ; Vosoughi Vahdat, Bijan (Supervisor)
Abstract
Artificial neural networks are mathematical models inspired by the nervous system and brain. The types and applications of these networks are very widespread nowadays, and it seems that they can be used to track the signals well and estimate the data of the next. In this research, we try to present a model that can predict the future of the trend of noisy signals that have unpredictable behavior, or in other words, chaotic signals. Such research is also widely used in the medical sciences, including the diagnosis of epileptic seizures or heart attacks. In this research, a study with high volatility financial data has been done as an example on this issue and the proposed model tries to be...
Active distance-based clustering using k-medoids
, Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 19 April 2016 through 22 April 2016 ; Volume 9651 , 2016 , Pages 253-264 ; 03029743 (ISSN) ; 9783319317526 (ISBN) ; Ghadiri, M ; Soleymani Baghshah, M ; Sharif University of Technology
Springer Verlag
2016
Abstract
k-medoids algorithm is a partitional, centroid-based clustering algorithm which uses pairwise distances of data points and tries to directly decompose the dataset with n points into a set of k disjoint clusters. However, k-medoids itself requires all distances between data points that are not so easy to get in many applications. In this paper, we introduce a new method which requires only a small proportion of the whole set of distances and makes an effort to estimate an upperbound for unknown distances using the inquired ones. This algorithm makes use of the triangle inequality to calculate an upper-bound estimation of the unknown distances. Our method is built upon a recursive approach to...
Concept Extraction of Sequential Patterns for Imitative Learning
, M.Sc. Thesis Sharif University of Technology ; Bagheri Shouraki, Saeed (Supervisor)
Abstract
The aim of this thesis is the concept extraction of sequential patterns for imitative learning for humanoid robots. In such a way that an existent that has the physical and cognitive similarities, begins to extract concepts and learns by observing the behavior of the other existent. In this project, it is assumed a humanoid robot that can understand the concepts such as hello, goodbye and different concepts and does the corresponding actions from the visual and auditory information. In this thesis, a new model has been presented to eliminate the improper and meaningless elasticity in patterns sequence, such as changes in accent or elasticity in movements. This model is called the fuzzy...
Two-phase flow separation in axial free vortex flow
, Article Journal of Computational Multiphase Flows ; Volume 9, Issue 3 , 2017 , Pages 105-113 ; 1757482X (ISSN) ; Ganjiazad, R ; Roshandel, R ; Ashjari, M. A ; Sharif University of Technology
2017
Abstract
Multi-phase flows, particularly two-phase flows, are widely used in the industries, hence in order to predict flow regime, pressure drop, heat transfer, and phase change, two-phase flows should be studied more precisely. In the petroleum industry, separation of phases such as water from petroleum is done using rotational flow and vortices; thus, the evolution of the vortex in two-phase flow should be considered. One method of separation requires the flow to enter a long tube in a free vortex. Investigating this requires sufficient knowledge of free vortex flow in a tube. The present study examined the evolution of tube-constrained two-phase free vortex using computational fluid dynamics. The...
Mesoporous silica nanoparticles (MCM-41) coated PEGylated chitosan as a pH-Responsive nanocarrier for triggered release of erythromycin [electronic resource]
, Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2014, Volume 63, Issue 13, Pages 692-697 ; Mazaheri Tehrani, Zahra ; Sharif University of Technology
Abstract
A pH-responsive drug delivery system based on core shell structure of mesoporous silica nanoparticle (MSN) and chitosan-PEG copolymer was prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and high-resolution transmission microscope (HR-TEM) techniques. In order to improve compatibility MSN and drug, mesoporous nanosilica was modified by 3-aminopropyl triethoxysilane. The release of erythromycin (a macrolide antibiotic) as a model drug was investigated in two pHs, 7.4 and 5.5
3D Numerical Simulation of Two-Phase Immiscible Flow in Axial Vortex Technology and Economic Analysis for Industrial Produced Water Pretreatment Facility in Desalting Plants
, M.Sc. Thesis Sharif University of Technology ; Roshandel, Ramin (Supervisor) ; Ashjari, Mohammad Ali (Supervisor)
Abstract
The phenomenon of vortex flow, is one of the most predominant streams in the nature. This phenomenon yielded by the motion of vortices, produces up to 1000 times acceleration of the Earth’s gravity. The issues of uncontrolled harvesting of oil wells and increase the life of the wells, which cause to increase in the extracted crude salt, reveal the importance of waste management and both handling and refining petroleum. According to global statistics, for every extracted barrel of oil, three barrels of water are yielded. Therefore, 250 million produced water barrels per day is produced.The separator technology with vortex core (brand Voraxial) is one of the latest technologies in waste-water...
Using Nonlinear Effects of Light for Optical Signal Processing
, M.Sc. Thesis Sharif University of Technology ; Kavehvash, Zahra (Supervisor)
Abstract
Ultrafast signal processing in time-domain with high resolution and reconfigura-bility is a challenging task. This paper, for the first time, introduces a time-varying metasurface consisting of graphene microribbon array for implementing time-lens in the terahertz domain. Given that the surface conductivity of graphene is proportional to the Fermi energy level in the THz regime, it is possible to change the phase property of the incident electromagnetic pulse by changing the Fermi level while the Fermi level itself is a function of voltage. Upon this fact, a quadratic temporal phase modulator, namely time-lens has been realized. This phase modulation is applied to the impinging signal in the...
Theoretical and Computational Investigation of Quantum Plasmonic Properties of Nanocluster Dimers
, M.Sc. Thesis Sharif University of Technology ; Jamshidi, Zahra (Supervisor)
Abstract
In today's era, metal nanoparticles play an important role in technologies emerging from different sciences, such as chemistry, physics, optics, material science, due to their unique characteristics. In the development of nanooptics science, it can be said that metal nanoparticles play an important role. The ability of conductive electrons collective oscillation causes surface charge density fluctuations in nanoparticles, this phenomenon is known as surface plasmons. Surface plasmons are surprisingly coupled with light and cause the significant increase in the intensity of optical fields induced in nanoparticles. Therefore, with the presence of localized surface plasmons or plasmon...
Theoretical Investigation of Ab-initio MD Approach to Increase the Efficiency and Accuracy of VCD Spectrum Calculation
, M.Sc. Thesis Sharif University of Technology ; Jamshidi, Zahra (Supervisor)
Abstract
Understanding of the Molecules is the main purpose of the chemistry. Ab-initio molecular dynamics (AIMD) as a branch of the computational chemistry, tries to give us a deep comprehension of the molecule, and its chemical, physical and optical activities. This comprehension, relies on the accuracy of quantum mechanics, in addition to the speed of the classical mechanics. The mixing of the quantum mechanics and the classical mechanics could simulate activities of the atoms in the time-domain, provided the mixing is done with precaution. This, in turn, helps us to forecast the response of a molecule in different situations, and also translating the macroscopic phenomena in a nanoscopic...
Investigation of Plasmonic Excitation in Carbonic Nanostructures Within Near-IR
, M.Sc. Thesis Sharif University of Technology ; Jamshidi, Zahra (Supervisor)
Abstract
To date, the plasmonic properties of many metallic and semi-conducting materials have been investigated and used in various industries. One of the plasmonic material categories that have always been considered is polycyclic aromatic hydrocarbon or PAH, whose plasmonic resonance energy depends on the charge state of the molecule. In this regard, it is easy to change the plasmonic resonance energy via changing the induced charge, which is a unique feature of the mentioned materials. In addition, plasmonic structures with excitations in the infrared region are able to enhance the vibration intensity of absorbed molecules by increasing the electric field around themselves. Therefore, they have...
Using Simulation-Optimization Approach for Fire Station Location and Vehicle Assignment Problem: a Case Study in Tehran, Iran
, M.Sc. Thesis Sharif University of Technology ; Amini, Zahra (Supervisor)
Abstract
In this research, the problem of locating fire stations and allocating equipment has been studied and a simulation-optimization approach has been presented to solve the problem. The mathematical models of this research were developed based on the idea of the randomness of the covered demand and the maximum expected coverage model. In these models, the issue of non-availability of equipment to cover accidents, the random nature of accidents, various fire incidents and the equipment needed to cover them are considered. Two mathematical models with deterministic and non-deterministic approach with different scenarios for demand are proposed. The non-deterministic model is developed with the aim...
Introducing An Integrated Framework For Solving The Fleet Planning Problem Using A Simulation-Optimization Approach
, M.Sc. Thesis Sharif University of Technology ; Amini, Zahra (Supervisor)
Abstract
One of the main concerns of industrial companies’ managers is providing an efficient logistics system. To achieve an efficient logistics system, the fleet planning problem is studied by many researchers in recent years. This problem consists of multiple sub-problems at three levels: operational, tactical, and strategic. These sub-problems are closely related to each other and need to be studied and addressed in an integrated manner. In this research, an attempt is made to provide an integrated framework to solve the vehicle routing problem (operational), outsourcing problem (tactical), and fleet composition problem (strategic). These problems have various uncertainties, including customer...
Dynamic Simulation and Control of Reactive Systems Involving Metabolic Pathways
, M.Sc. Thesis Sharif University of Technology ; Bozorgmehry Bozarjomehry, Ramin (Supervisor) ; Setoodeh, Payam (Co-Supervisor)
Abstract
In this project, modeling, simulation, and control of the Saccharomyces Cerevisiae were studied. In the first section, simulation and control of a structural model of saccharomyces Cerevisiae were performed. Fuzzy Logic Controller (FLC) as a model-independent controller and Global Linearization Controller (GLC) as a model-based controller were designed. Additionally, two types of Kalman filters were designed to predict all states of the structural model: 1-Extended Kalman Filter (EKF), 2- Unscented Kalman Filter (UKF). As a concise explanation, the control action of the GLC is a function of all states of the model, and since that measuring all metabolites is not practical, the EKF and UKF...
Analytical Modelling and Optimization of Disk Type, Slot Less Resolver
, M.Sc. Thesis Sharif University of Technology ; Nasiri Gheidari, Zahra (Supervisor)
Abstract
Resolvers, due to their robust structure, are widely used in automation systems. Among the types of resolvers, the accuracy of the Wound Rotor (WR) resolver in the occurrence of common mechanical errors is higher than other types of resolvers. therefore, in this thesis, an AFWRR is studied to improve the performance. Increasing the number of poles in WR resolvers is a good solution for increasing the accuracy of these electromagnetic position sensors. However, high-speed WR resolvers due to employing fractional slot windings suffer from rich sub-harmonics in the induced voltages. A common solution for suppressing the undesirable sub-harmonics is using multi-layer winding with appropriate...
A Survey on Searchable Symmetric Encryption Schemes
, M.Sc. Thesis Sharif University of Technology ; Khazaei, Shahram (Supervisor)
Abstract
Using “Searchable Encryption” enables us to encrypt the data, while preserving the possibility of running search queries. One of the most important applications of the mentioned is in Cloud Storage. As users do not trust the Cloud space, they are not inclined to store their data on the Could. The solution to this problem is of course, Cryptography. However, ordinary Cryptography methods, eliminate the data’s searchability. Hence, we need encryption schemes that code the data while retaining their searchability. So far, various schemes has been proposed that differ in their performance, security level, and usage. In this thesis, we aim to discuss and analyze these methods
Temporal Depth Imaging Based on Dispersion
, M.Sc. Thesis Sharif University of Technology ; Kavehvash, Zahra (Supervisor)
Abstract
In this thesis, the aim is designing an optical temporal imaging system. In recent years, due to many applications, including the receipt of high-rate data by slow receivers and compensation of dispersion in telecommunication systems, researchers have considered the topic of temporal imaging. This field of research is based on dispersion, electro-optical modulators or time lenses and space-time theory. By modeling dispersion properties as a depth dimension and taking ideas from three-dimensional spatial imaging systems we intended to increase the temporal resolution and depth of focus of the structure. We also present a novel technique for multiplexing and demultiplexing telecommunication...
Time Domain Optical Signal Processing Based on the Duality Between Dispersion and Diffraction
, M.Sc. Thesis Sharif University of Technology ; Kavehvash, Zahra (Supervisor)
Abstract
In the last decades, due to the growing demand of transferring information with high transmission rates, the complexity and development of telecommunication and optical systems is remarkable. Researchers around the world attempt to explore extraordinary potential of light to process information. In the mid-19th century, scientists discovered a mathematical symmetry between the spatial and temporal optics fields, which originated from the similarity of equations governing the paraxial diffraction of beams and the dispersion of narrow-band pulses known as space– time duality in scientific texts. This new approach provides more advanced and potent methods to temporal processing and...