Loading...
Search for: aghaziarati--m
0.139 seconds

    Direct production of dimethyl ether from synthesis gas utilizing a new bifunctional catalyst

    , Article 19th International Congress of Chemical and Process Engineering, CHISA 2010 and 7th European Congress of Chemical Engineering, ECCE-7, 28 August 2010 through 1 September 2010, Prague ; 2010 Khandan, N ; Kazemeini, M ; Aghaziarati, M ; Sharif University of Technology
    2010
    Abstract
    A series of bifunctional catalysts Cu-ZnO-ZrO 2/Al-modified H-Mordenite were prepared by co precipitating sedimentation method and were characterized. Active sites were dispersed well. The synthesis of dimethyl ether (DME) via direct CO hydrogenation was evaluated in a three-phase slurry reactor. Cu-ZnO-ZrO 2/Al-modified H-Mordenite was a suitable catalyst for the production of dimethyl ether from synthesis gas. The appropriate ratio of methanol synthesis catalyst (Cu-ZnO-ZrO 2) to methanol dehydration catalyst (Al-modified H Mordenite) was 2:1. In this condition, CO conversion and DME selectivity were ≈ 68% and 82%, respectively. This is an abstract of a paper presented at the 7th European... 

    Synthesis of dimethyl ether over modified H-mordenite zeolites and bifunctional catalysts composed of Cu/ZnO/ZrO2 and modified H-mordenite zeolite in slurry phase

    , Article Catalysis Letters ; Volume 129, Issue 1-2 , 2009 , Pages 111-118 ; 1011372X (ISSN) Khandan, N ; Kazemeini, M ; Aghaziarati, M ; Sharif University of Technology
    2009
    Abstract
    Synthesis of dimethyl ether (DME) via methanol dehydration were investigated over various catalysts, and via direct CO hydrogenation over hybrid catalysts composed of Al-modified H-Mordenite zeolite and Cu/ZnO/ZrO 2. H-Mordenite zeolite exhibited the highest activity in dehydration of methanol. However, its selectivity toward dimethyl ether was rather low. For this reason, the H-Mordenite was modified. Modification of zeolites was performed by wet impregnation method and considered catalysts were characterized by AAS, XRD and NH3-TPD analyses. Results of catalytic tests indicated that H-Mordenite modified with 8 wt% aluminum oxide was the best catalyst for synthesis of dimethyl ether from... 

    Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether

    , Article Applied Catalysis A: General ; Volume 349, Issue 1-2 , 2008 , Pages 6-12 ; 0926860X (ISSN) Khandan, N ; Kazemeini, M ; Aghaziarati, M ; Sharif University of Technology
    2008
    Abstract
    The liquid-phase dehydration of methanol to dimethyl ether was investigated over various materials including synthetic zeolites, namely, ZSM-5, Y, Mordenite, Ferrierite and Beta as well as silica and alumina. The key characters investigated were the Si/Al ratio and cation exchange. The results showed that the Mordenite zeolite exchanged with H+ exhibited the highest activity in dehydration of methanol. After finding the most active catalyst, the Mordenite zeolite was modified with Cu, Zn, Ni, Al, Zr, Mg and Na via wet-impregnation method to further improve its selectivity, and characterized by AAS, XRD, NH3-TPD, NH3-FT-IR and BET surface area techniques. It was found that these materials... 

    Synthesis of highly porous nanocrystalline alumina as a robust catalyst for dehydration of methanol to dimethyl ether

    , Article Journal of Porous Materials ; Volume 20, Issue 1 , 2013 , Pages 151-157 ; 13802224 (ISSN) Zaherian, A ; Kazemeini, M ; Aghaziarati, M ; Alamolhoda, S ; Sharif University of Technology
    2013
    Abstract
    Highly porous nanocrystalline alumina was synthesized using two different precipitation processes and precipitating agents, which were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and porosimetry analyses. Different precipitating agents yielded nanocrystalline alumina catalysts with different morphologies and textural properties. Batch precipitation using sodium bicarbonate at constant pH resulted in a highly porous nanocrystalline γ-alumina catalyst, having surface area of 351.47 m2 g-1, total pore volume of 1.68 cm3 g -1 and mean pore diameter of 19.17 nm. The mean crystallite size was also determined to be 3.8 nm, based on the XRD results. Catalytic... 

    Hydrogenation of maleic anhydride to tetrahydrofuran using bifunctional catalysts

    , Article 18th International Congress of Chemical and Process Engineering, CHISA 2008, Prague, 24 August 2008 through 28 August 2008 ; 2008 Aghaziarati, M ; Kazemeini, M ; Soltanieh, M ; Khandan, N ; Sharif University of Technology
    2008
    Abstract
    A series of bifunctional catalysts, including Cu-ZnO-ZrO 2 and H-Y zeolite catalysts, were prepared and tested for conversion of maleic anhydride (MA) to tetrahydrofuran (THF). Cu-ZnO-ZrO 2 catalyst was used as the hydrogenating component and H-Y zeolite as the dehydrating component. The appropriate ratio of Cu/ZnO in the hydrogenation catalyst was 50:45, for which the conversion of MA and selectivity of THF reached 100 and 46%, respectively, at 50 bar and 493 K. The bifunctional catalyst of Cu-ZnOZrO 2/H-Y can produce THF from MA with high activity, selectivity, and stability. This is an abstract of a paper presented at the 18th International Congress of Chemical and Process Engineering... 

    Evaluation of zeolites in production of tetrahydrofuran from 1,4-butanediol: Performance tests and kinetic investigations

    , Article Industrial and Engineering Chemistry Research ; Volume 46, Issue 3 , 2007 , Pages 726-733 ; 08885885 (ISSN) Aghaziarati, M ; Kazemeini, M ; Soltanieh, M ; Sahebdelfar, S ; Sharif University of Technology
    2007
    Abstract
    The liquid-phase dehydration of 1,4-butanediol to tetrahydrofuran was investigated over various materials including synthetic zeolites, namely, ZSM-5, Y, Mordenite, Ferrierite, and Beta as well as silica and alumina. The key characters investigated were the Si/Al ratio and cation exchange. The results showed that the ZSM-5 zeolite exchanged with NH4+ exhibited the highest activity in dehydration of 1,4-butanediol. In all tests, nearly 100% selectivity to tetrahydrofuran was observed. After finding the most active catalyst, the kinetics of dehydration of 1,4-butanediol to tetrahydrofuran was studied over this material. The influence of operating parameters such as temperature, pressure, and... 

    Synthesis of tetrahydrofuran from maleic anhydride on Cu-ZnO-ZrO2/H-Y bifunctional catalysts

    , Article Catalysis Communications ; Volume 9, Issue 13 , 2008 , Pages 2195-2200 ; 15667367 (ISSN) Aghaziarati, M ; Soltanieh, M ; Kazemeini, M ; Khandan, N ; Sharif University of Technology
    2008
    Abstract
    A series of bifunctional Cu-ZnO-ZrO2/H-Y catalysts of different compositions were prepared by coprecipitating sedimentation method and were characterized by surface area and XRD analyses. The catalytic performance in synthesis of tetrahydrofuran was evaluated and optimized in a three-phase slurry batch reactor. The experimental results showed that the appropriate ratio of Cu/ZnO in the hydrogenation catalyst was 50/45, for which the conversion of maleic anhydride (MA) and selectivity of tetrahydrofuran (THF) reached 100% and 46%, respectively, at 50 bar and 493 K after 6 h of operation. Also, according to these results, it was demonstrated that the incorporation of zirconium oxide in the... 

    An optimum catalyst for dehydration of 1, 4-butanediol in production of tetrahydrofuran

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Aghaziarati, M ; Kazemeini, M ; Soltanieh, M ; Sahebdelfar, S ; Sharif University of Technology
    2006
    Abstract
    In the present work, Tetrahydrofuran was produced from 1,4-butanediol by catalytically dehydration of 1,4-butanediol in contact with a catalyst. Material used as catalyst were Synthesized and natural zeolites as well as alumina and silica. Synthesized zeolites were investigated in different aspect such as pore size, cation and Si/Al ratio. Results indicated that with increasing the Si/Al ratio, the activity of the zeolite used for 1, 4-butanediol dehydration step was reduced. Furthermore, it was observed that, upon the replacement of sodium with hydrogen and ammonium cations, the conversion of the 1, 4-butanediol into tetrahydrofuran was increased. It was shown zeolites possessing smaller... 

    Synthesis and Evaluation of a Nano-Catalyst for Dehydration of Methanol to Dimethyl Ether

    , M.Sc. Thesis Sharif University of Technology Zaherian, Amir Ali (Author) ; Kazemeini, Mohammad (Supervisor) ; Aghaziarati, Mahmoud (Supervisor)
    Abstract
    Dimethyl ether (DME) as a clean fuel is a suitable alternative for diesel fuel. It has a high cetane number and does not contain any sulfur or metal compounds. Furthermore, DME does not form any soot and has a potential to reduce NOx emissions. In addition, it is not corrosive to any metal and not harmful to the human body. Two approaches are currently used for the production of DME from synthesis gas. The first is an indirect two-step process involving methanol synthesis followed by catalytic dehydration of methanol to DME over solid-acid catalysts, while the second method enables direct synthesis of DME using a bifunctional catalyst. At present, indirect synthesis of DME is a more... 

    Kinetic Modeling of Dimehtyl Ether Production from Synthesis Gas

    , M.Sc. Thesis Sharif University of Technology Kargar Sharif Abad, Monireh (Author) ; Kazemeini, Mohammad (Supervisor) ; Aghaziarati, Mahmoud (Supervisor)
    Abstract
    In view of environmental problems and the limited energy supply, synthesis of new liquid fuel from coal or natural gas is becoming a hot research in recent years. Dimethyl ether (DME) is one of the most promising alternates of such synthetic fuels. In this project the kinetics of direct DME synthesis from syngas (H2 and CO) over the new bifunctional catalyst has been investigated in slurry reactor system. A new mechanism and rate law expression were established. The kinetic model has been fitted the experimental data, which has been obtained by other researchers. The new bifunctional catalyst was composed of Cu/ZnO/ZrO2 and Al-modified H-Mordenite zeolite. The calculated apparent... 

    Direct Synthesis of Dimethyl Ether from Carbon Dioxide

    , M.Sc. Thesis Sharif University of Technology Taher Aslani, Mohammad Reza (Author) ; Kazemeini, Mohammad (Supervisor) ; Aghaziarati, Mahmoud (Co-Advisor) ; Kazemian, Masoud (Co-Advisor)
    Abstract
    In this research, direct synthesis of dimethyl ether (DME) from CO2 hydrogenation in three phase slurry reactor was investigated. Bifunctional catalysts composed of Cu- ZnO-Al2O3-ZrO2 as hydrogenation component and zeolite Na-Mordenite as dehydration component, with different Al2O3 and ZrO2 contents were synthesized by coprecipitating sedimentation and influences of Al2O3 and ZrO2 on CO2 conversion and DME selectivity were evaluated. Results show, both Al2O3 and ZrO2 enhanced conversion, but Al2O3 markedly increase selectivity of DME. However, when the total contents of Al2O3 and ZrO2 was increased up to 16 wt% , CO2 conversion and DME selectivity remarkably decreased. BET and XRD analyzes... 

    Probability of missed detection as a criterion for receiver placement in MIMO PCL

    , Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) Majd, M. N ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar  

    An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation

    , Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) Ghazanfari, D ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
    2008
    Abstract
    SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity  

    MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak

    , Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) Chitgarha, M. M ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function... 

    Detection-localization tradeoff in MIMO radars

    , Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) Nazari Majd, M ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance... 

    Antenna placement and power allocation optimization in MIMO detection

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 Radmard, M ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive... 

    Ambiguity function of MIMO radar with widely separated antennas

    , Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas  

    Choosing the position of the receiver in a MISO passive radar system

    , Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) Chitgarha, M. M ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    2012
    Abstract
    By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only... 

    Adaptive filtering techniques in passive radar

    , Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 1067-1078 ; 21555753 (ISSN) ; 9783954042234 (ISBN) Chitgarha, M. M ; Radmard, M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2013
    Abstract
    One of the most important obstacles in passive radar applications is removing the direct signal from the target channel. Otherwise, week echoes from the targets in the target channel would be ignored due to the limited dynamic range of the system. One of the most effective techniques in this field is using adaptive filters. In this paper various adaptive filters are introduced and their performances are shown and compared  

    Ambiguity function based receiver placement in multi-site radar

    , Article 2016 CIE International Conference on Radar, RADAR 2016, 10 October 2016 through 13 October 2016 ; 2017 ; 9781509048281 (ISBN) Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    It has been shown that using multiple antennas in a radar system improves the performance considerably, since multiple target echoes are received from different aspect angles of the target. In this way, the target detection is improved. However, when using multiple antennas, some problems, such as designing the transmit signals, synchronization, etc. emerge that should be solved. One of such problems is the receiver placement. Receiver placement deals with choosing a proper position for the receive antenna in order to optimize the whole system's performance. In this paper, a receiver placement procedure based on improving the radar ambiguity function is proposed for the case of a multisite...