Loading...
Search for: ajdari--m
0.17 seconds

    Design and construction of an 8-bit computer, along with the design of its graphical simulator for pedagogical purposes

    , Article 2012 15th International Conference on Interactive Collaborative Learning, ICL 2012, 26 September 2012 through 28 September 2012 ; September , 2012 ; 9781467324274 (ISBN) Ajdari, M ; Tabandeh, M ; Sharif University of Technology
    2012
    Abstract
    In an introductory course of computer architecture, it is of high value that students use a simple and special CPU designed for this purpose and also its graphical simulator for better understanding of the computer hardware operation. In this paper, we present Abu-Reiahn, a simple 8-bit processor which we have specifically designed and built as the introduction part of computer architecture course to help students familiarize with hardware and software of a real CPU. Effective use of our computer graphical simulator along with the hardware allow the students to deepen their knowledge of logic circuits and the need for desired timing signals in a CPU to perform specific tasks  

    An educational hardware/software tool for the first course in computer architecture

    , Article Iranian Journal of Science and Technology - Transactions of Electrical Engineering ; Volume 40, Issue 1 , 2016 , Pages 75-78 ; 22286179 (ISSN) Ajdari, M ; Tabandeh, M ; Sharif University of Technology
    Shiraz University  2016
    Abstract
    In this paper, we briefly present our design decisions and challenges involved in designing the hardware/software tools that we prepared based on our several years of experience in teaching logic circuits and computer architecture which help students of the first course in computer architecture to familiarize themselves with the basic operations of a computer. In fact, we first present the hardware of an 8-bit processor and its I/O and memory board that we have specifically designed and built using basic logic ICs for pedagogical purposes. We then go over the features and design challenges of a special monitor program we created. This monitor program directly runs on the top of our 8-bit... 

    A lower bound for algebraic connectivity based on the connection-graph- stability method

    , Article Linear Algebra and Its Applications ; Volume 435, Issue 1 , Sep , 2011 , Pages 186-192 ; 00243795 (ISSN) Ajdari Rad, A ; Jalili, M ; Hasler, M ; Sharif University of Technology
    2011
    Abstract
    This paper introduces the connection-graph-stability method and uses it to establish a new lower bound on the algebraic connectivity of graphs (the second smallest eigenvalue of the Laplacian matrix of the graph) that is sharper than the previously published bounds. The connection-graph-stability score for each edge is defined as the sum of the lengths of the shortest paths making use of that edge. We prove that the algebraic connectivity of the graph is bounded below by the size of the graph divided by the maximum connection-graph-stability score assigned to the edges  

    Reservoir optimization in recurrent neural networks using properties of kronecker product

    , Article Logic Journal of the IGPL ; Volume 18, Issue 5 , 2009 , Pages 670-685 ; 13670751 (ISSN) Ajdari Rad, A ; Hasler, M ; Jalili, M ; Sharif University of Technology
    2009
    Abstract
    Recurrent neural networks based on reservoir computing are increasingly being used in many applications. Optimization of the topological structure of the reservoir and the internal connection weights for a given task is one of the most important problems in reservoir computing. In this paper, considering the fact that one can construct a large matrix using Kronecker products of several small-size matrices, we propose a method to optimize the reservoir. Having a small number of parameters to optimize, a gradient based algorithm is applied to optimize parameters, and consequently the reservoir. In addition to reducing the number of parameters for optimization, potentially, the method is able... 

    A Novel Metamodel-based Simulation Optimization Algorithm using a Hybrid Sequential Experimental Design

    , M.Sc. Thesis Sharif University of Technology Ajdari, Ali (Author) ; Mahlooji, Hashem (Supervisor)
    Abstract
    In this work, we propose a metamodel-based simulation optimization algorithm using a novel hybrid sequential experimental design. The algorithm starts with a metamodel construction phase in which at each stage, a sequential experimental design is used to select a new sample point from the search space using a hybrid exploration-exploitation search strategy. Based on the available design points at each stage, a metamodel is constructed using Artificial Neural Network (ANN) and Kriging interpolation techniques. The resulting metamodel is then used in the optimization process to evaluate new solutions. We use Imperialist Competitive Algorithm (ICA) which is a powerful population-based... 

    An enterprise-grade open-source data reduction architecture for all-flash storage systems

    , Article Proceedings of the ACM on Measurement and Analysis of Computing Systems ; Volume 6, Issue 2 , 2022 ; 24761249 (ISSN) Ajdari, M ; Raaf, P ; Kishani, M ; Salkhordeh, R ; Asadi, H ; Brinkmann, A ; Sharif University of Technology
    Association for Computing Machinery  2022
    Abstract
    All-flash storage (AFS) systems have become an essential infrastructure component to support enterprise applications, where sub-millisecond latency and very high throughput are required. Nevertheless, the price per capacity ofsolid-state drives (SSDs) is relatively high, which has encouraged system architects to adoptdata reduction techniques, mainlydeduplication andcompression, in enterprise storage solutions. To provide higher reliability and performance, SSDs are typically grouped usingredundant array of independent disk (RAID) configurations. Data reduction on top of RAID arrays, however, adds I/O overheads and also complicates the I/O patterns redirected to the underlying backend SSDs,... 

    Insights into the efficient roles of solid electrolyte interphase derived from vinylene carbonate additive in rechargeable batteries

    , Article Journal of Electroanalytical Chemistry ; Volume 909 , 2022 ; 15726657 (ISSN) Mosallanejad, B ; Sadeghi Malek, S ; Ershadi, M ; Sharifi, H ; Ahmadi Daryakenari, A ; Boorboor Ajdari, F ; Ramakrishna, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Formation of unstable solid electrolyte interphase (SEI) layers lacking of thermal stability in non-aqueous electrolytes of rechargeable batteries is the main bottleneck for their long-life cycling, especially at elevated temperatures. Inclusion of a small dose of functional electrolyte additives into the batteries' electrolyte can be highly beneficial to surmount this issue. Of these additives, vinylene carbonate (VC) has drawn particular attention thanks to its high ability to build protective layers at anodes showing good integrity and outstanding thermal stability. In addition to its primary roles in present-day lithium-ion batteries (LIBs), VC additive has also been examined in other... 

    Re-architecting I/O caches for emerging fast storage devices

    , Article International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS ; Volume 3 , 2023 , Pages 542-555 ; 978-145039918-0 (ISBN) Ajdari, M ; Peykani Sani, P ; Moradi, A ; Khanalizadeh Imani, M ; Bazkhanei, A. H ; Asadi, H ; Aamodt T. M ; Jerger N. E ; Swift M ; Sharif University of Technology
    Association for Computing Machinery  2023
    Abstract
    I/O caching has widely been used in enterprise storage systems to enhance the system performance with minimal cost. Using Solid-State Drives (SSDs) as an I/O caching layer on the top of arrays of Hard Disk Drives (HDDs) has been well studied in numerous studies. With emergence of ultra fast storage devices, recent studies suggest to use them as an I/O cache layer on top of mainstream SSDs in I/O intensive applications. Our detailed analysis shows despite significant potential of ultra-fast storage devices, existing I/O cache architectures may act as a major performance bottleneck in enterprise storage systems, which prevents to take advantage of the device full performance potentials. In... 

    Probability of missed detection as a criterion for receiver placement in MIMO PCL

    , Article IEEE National Radar Conference - Proceedings, 7 May 2012 through 11 May 2012, Atlanta, GA ; 2012 , Pages 0924-0927 ; 10975659 (ISSN) ; 9781467306584 (ISBN) Majd, M. N ; Chitgarha, M. M ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Using multiple antennas at the transmit and receive sides of a passive radar brings both the benefits of MIMO radar and passive radar. However one of the obstacles arisen in such configuration is the receive antennas placement in proper positions so that the radar performance is improved. Here we just consider the case of positioning one receiver among multiple illuminators of opportunity. Indeed it is a start for the solution of optimizing the geometry of the multiple receivers in a passive radar  

    An efficient method for the ring opening of epoxides with aromatic amines by Sb(III) chloride under microwave irradiation

    , Article Journal of Chemical Research ; Issue 4 , 2008 , Pages 220-221 ; 03082342 (ISSN) Ghazanfari, D ; Hashemi, M. M ; Mottaghi, M. M ; Foroughi, M. M ; Sharif University of Technology
    2008
    Abstract
    SbCl3 supported on montmorillonite K-10 is an efficient catalyst for the ring opening of epoxides with aromatic amines under solvent-free conditions and microwave irradiation to give the corresponding b-amino alcohols in high yields with high regioselectivity  

    Resource allocation for uav-enabled integrated sensing and communication (isac) via multi-objective optimization

    , Article ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings ; Volume 2023-June , 2023 ; 15206149 (ISSN); 978-172816327-7 (ISBN) Rezaei, O ; Naghsh, M. M ; Karbasi, M ; Nayebi, M. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2023
    Abstract
    In this paper, we consider an integrated sensing and communication (ISAC) system with wireless power transfer (WPT) where an unmanned aerial vehicle (UAV)-based radar serves a group of energy-limited communication users in addition to its sensing functionality. In this architecture, the radar senses the environment in phase 1 (namely sensing phase) and mean-while, the communications users (nodes) harvest and store the energy from the radar transmit signal. The stored energy is then used for information transmission from the nodes to UAV in phase 2, i.e., uplink phase. Performance of the radar system depends on the transmit signal as well as the receive filter; the energy of the transmit... 

    MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak

    , Article Signal Processing ; Volume 118 , 2016 , Pages 139-152 ; 01651684 (ISSN) Chitgarha, M. M ; Radmard, M ; Nazari Majd, M ; Karbasi, S. M ; Nayebi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    One of the important obstacles in MIMO (Multiple Input Multiple Output) radars is the issue of designing proper transmit signals. Indeed, the capability of signal design is a significant advantage in MIMO radars, through which, the system can achieve much better performance. Many different aspects of this performance improvement have been considered yet, and the transmit signals have been designed to attain such goal, e.g., getting higher SNR or better detector's performance at the receiver. However, an important tool for evaluating the radar's performance is its ambiguity function. In this paper, we consider the problem of transmit signal design, in order to optimize the ambiguity function... 

    Detection-localization tradeoff in MIMO radars

    , Article Radioengineering ; Volume 26, Issue 2 , 2017 , Pages 581-587 ; 12102512 (ISSN) Nazari Majd, M ; Radmard, M ; Chitgarha, M. M ; Bastani, M. H ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    Two gains play key roles in recently developed MIMO wireless communication systems: "spatial diversity" gain and "spatial multiplexing" gain. The diversity gain refers to the capability to decrease the error rate of the MIMO channel, while the multiplexing gain implicitly refers to the amount of increase in the capacity of the MIMO channel. It has been shown that there is a fundamental tradeoff between these two types of gains, meaning interplay between increasing reliability (via an increase in the diversity gain) and increasing data rate (via an increase in the multiplexing gain). On the other hand, recently, MIMO radars have attracted much attention for their superior ability to enhance... 

    Antenna placement and power allocation optimization in MIMO detection

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Vol. 50, Issue 2 , April , 2014 , pp. 1468-1478 Radmard, M ; Chitgarha, M. M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    It is a well known fact that using multiple antennas at transmit and receive sides improves the detection performance. However, in such multiple-input multiple-output (MIMO) configuration, proper positioning of transmitters and receivers is a big challenge that can have significant influence on the performance of the overall system. In addition, determining the power of each transmitter under a total power constraint is a problem that should be solved in order to enhance the performance and coverage of such a system. In this paper, we design the Neyman-Pearson detector under the Rayleigh scatter model and use it to introduce a criterion for the antenna placement at both transmit and receive... 

    Ambiguity function of MIMO radar with widely separated antennas

    , Article Proceedings International Radar Symposium ; 16 -18 June , 2014 ; ISSN: 21555753 Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2014
    Abstract
    There has been much interest, recently, towards exploiting the Multiple-Input Multiple-Output (MIMO) technique in radar. It is shown that using multiple antennas at transmit and receive sides can improve the performance of the system. However, in order to analyze the system's performance, its ambiguity function, i.e. the ambiguity function of a MIMO radar, is needed to be defined. In this paper, beginning from the information theoretic definitions, we derive such function, specifically for a MIMO radar with widely separated antennas  

    Choosing the position of the receiver in a MISO passive radar system

    , Article European Microwave Week 2012: "Space for Microwaves", EuMW 2012, Conference Proceedings - 9th European Radar Conference, EuRAD 2012 ; 2012 , Pages 318-321 ; 9782874870293 (ISBN) Chitgarha, M. M ; Majd, M. N ; Radmard, M ; Nayebi, M. M ; Sharif University of Technology
    2012
    Abstract
    By combining the two ideas of MIMO (Multiple Input Multiple Output) and PCL (Passive Coherent Location) in radar, one can achieve the advantages of both recently developed techniques simultaneously. While using multiple antennas at the receive side provides a spatial diversity of the object to be detected, using multiple illuminators of opportunity, most importantly, makes the radar covert to the interceptors. One obstacle in such MIMO configuration is choosing the positions of the receive antennas. In this paper, after analyzing the Neyman-Pearson detector for the DVB-T based PCL, we introduce the probability of missed detection as a criterion to place the receive antenna. Here, we only... 

    Adaptive filtering techniques in passive radar

    , Article Proceedings International Radar Symposium, Dresden ; Volume 2 , June , 2013 , Pages 1067-1078 ; 21555753 (ISSN) ; 9783954042234 (ISBN) Chitgarha, M. M ; Radmard, M ; Majd, M. N ; Nayebi, M. M ; Sharif University of Technology
    2013
    Abstract
    One of the most important obstacles in passive radar applications is removing the direct signal from the target channel. Otherwise, week echoes from the targets in the target channel would be ignored due to the limited dynamic range of the system. One of the most effective techniques in this field is using adaptive filters. In this paper various adaptive filters are introduced and their performances are shown and compared  

    Ambiguity function based receiver placement in multi-site radar

    , Article 2016 CIE International Conference on Radar, RADAR 2016, 10 October 2016 through 13 October 2016 ; 2017 ; 9781509048281 (ISBN) Radmard, M ; Chitgarha, M. M ; Nazari Majd, M ; Nayebi, M. M ; Sharif University of Technology
    2017
    Abstract
    It has been shown that using multiple antennas in a radar system improves the performance considerably, since multiple target echoes are received from different aspect angles of the target. In this way, the target detection is improved. However, when using multiple antennas, some problems, such as designing the transmit signals, synchronization, etc. emerge that should be solved. One of such problems is the receiver placement. Receiver placement deals with choosing a proper position for the receive antenna in order to optimize the whole system's performance. In this paper, a receiver placement procedure based on improving the radar ambiguity function is proposed for the case of a multisite...