Loading...
Search for: akhavan-bitaghsir--saeed
0.105 seconds

    An Intelligent Routing Protocol for Delay Tolerant Networks Using Genetic Algorithm

    , M.Sc. Thesis Sharif University of Technology Akhavan Bitaghsir, Saeed (Author) ; Hendessi, Faramarz (Supervisor)
    Abstract
    Due to the dynamic topology of vehicular ad hoc networks, routing of packets in these networks faces a lot of difficulties. The situation will become more challenging when we have to deal with Delay Tolerant Networks (DTN) which are also sparse and partitioned and we need to use some vehicles to store the packets and carry them from one partition to another. Despite all these difficulties, by looking through movements of vehicles in an urban environment, we can find out that the topology of the network does not change in a pure random way and we can bring the traffic models of streets into account for having better routing performance. In this thesis, we proposed an intelligent routing... 

    Size-dependent genotoxicity of graphene nanoplatelets in human stem cells

    , Article Biomaterials ; Volume 33, Issue 32 , 2012 , Pages 8017-8025 ; 01429612 (ISSN) Akhavan, O ; Ghaderi, E ; Akhavan, A ; Sharif University of Technology
    2012
    Abstract
    Reduced graphene oxide nanoplatelets (rGONPs) were synthesized by sonication of covalently PEGylated GO sheets followed by a chemical reduction using hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs), as a fundamental factor in tissue engineering, were isolated from umbilical cord blood (as a recently proposed source for extracting fresh hMSCs) to investigate, for the first time, the size-dependent cyto- and geno-toxic effects of the rGONPs on the cells. The cell viability test showed significant cell destructions by 1.0 μg/mL rGONPs with average lateral dimensions (ALDs) of 11±4 nm, while the rGO sheets with ALDs of 3.8±0.4 μm could exhibit a significant cytotoxic... 

    Genotoxicity of graphene nanoribbons in human mesenchymal stem cells

    , Article Carbon ; Volume 54 , 2013 , Pages 419-431 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Emamy, H ; Akhavan, F ; Sharif University of Technology
    2013
    Abstract
    Single-layer reduced graphene oxide nanoribbons (rGONRs) were obtained through an oxidative unzipping of multi-walled carbon nanotubes and a subsequent deoxygenation by hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs) were isolated from umbilical cord blood and used for checking the concentration- and time-dependent cyto- and geno-toxic effects of the rGONRs and reduced graphene oxide sheets (rGOSs). The cell viability assay indicated significant cytotoxic effects of 10 μg/mL rGONRs after 1 h exposure time, while the rGOSs exhibited the same cytotoxicity at concentration of 100 μg/mL after 96 h. The oxidative stress was found as the main mechanism involved in the... 

    Performance of three-level spectrally encoded spreadtime CDMA in the presence of multiple interferences [electronic resource]

    , Article IET Communications ; July 2011, Volume 5, Issue 10, P. 1328-1335 Mashhadi, S. (Saeed) ; Mashhadi, Saeed ; Salehi, J. A ; Sharif University of Technology
    Abstract
    In this study the authors present an in-depth study, analysis and discussion on maximum likelihood (ML)-based receiver for a typical spectrally encoded spread-time CDMA in the presence of multiple narrowband interference (NBI) signals in an additive white Gaussian noise channel. Furthermore, the authors demonstrate that by combining useful properties of ML-based receiver and three-level codes, that is, codes with values of -1, 0, +1, the authors can introduce a new strategy in which superior performance with respect to previous receiver structure based on two-level codes, that is, codes with values of -1, +1, can be attained. With the help of an example, the authors drive, first, the... 

    Investigation of Multiphase Flow in Oil Wells (with Focus on Two Phase Flow), Flow Pattern Recognition and Modeling

    , M.Sc. Thesis Sharif University of Technology Shams, Reza (Author) ; Shad, Saeed (Supervisor) ; Jamshidi, Saeed (Supervisor)
    Abstract
    The concurrent flow of oil and water is a common occurrence in the field of multiphase flow in different fields including petroleum industry. In oil and gas, production engineers often face a situation in which more than one phase is flowing through the producers. In such conditions an accurate assessment of pressure loss inside the well plays a vital role in efficient and effective production planning. Changes in well orientation, wellbore diameter, reservoir and fluid properties as well as fluid flow rates are among parameters in which will affect the flow patterns that can occur inside a well during its life time. These flow patterns are created as a result of a competition between... 

    Casing Design Optimization Considering Drilling and Production Conditions

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Mahdi (Author) ; Jamshidi, Saeed (Supervisor) ; Shad, Saeed (Supervisor)
    Abstract
    Casing design is one of the most expensive parts in the drilling of oil wells, and any cost reduction with the basic design of these casing strings will significantly reduce the total cost of the operation. In recent years, occurring scenarios-based casing design has become popular; Because in many cases, it eliminates non-occurring scenarios such as gas kick and saves on drilling costs. In this study, we have tried to investigate all scenarios that may occur during the lifetime of the well, whether drilling or production, and for each well, based on its own field information, possible scenarios for each casing part are selected separately and the applying loads are calculated. For this... 

    Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol

    , Article Carbon ; Volume 49, Issue 1 , January , 2011 , Pages 11-18 ; 00086223 (ISSN) Akhavan, O ; Sharif University of Technology
    2011
    Abstract
    Graphene oxide platelets synthesized by using a chemical exfoliation method were dispersed in a suspension of ZnO nanoparticles to fabricate ZnO/graphene oxide composite. Formation of graphene oxide platelets (with average thickness of ∼0.8 nm) hybridized by ZnO nanoparticles (with average diameter of ∼20 nm) was investigated. The 2D band in Raman spectrum confirmed formation of single-layer graphene oxides. The gradual photocatalytic reduction of the graphene oxide sheets in the ZnO/graphene oxide suspension of ethanol was studied by using X-ray photoelectron spectroscopy for different ultra violet (UV)-visible irradiation times. After 2 h irradiation, the relative concentration of the... 

    Thickness dependent activity of nanostructured TiO2/α- Fe2O3 photocatalyst thin films

    , Article Applied Surface Science ; Volume 257, Issue 5 , 2010 , Pages 1724-1728 ; 01694332 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    The effect of thickness of TiO2 coating on synergistic photocatalytic activity of TiO2 (anatase)/α-Fe 2O3/glass thin films as photocatalysts for degradation of Escherichia coli bacteria in a low-concentration H2O2 solution and under visible light irradiation was investigated. Nanograined α-Fe2O3 films with optical band-gap of 2.06 eV were fabricated by post-annealing of thermal evaporated iron oxide thin films at 400 °C in air. Increase in thickness of the Fe2O3 thin film (here, up to 200 nm) resulted in a slight reduction of the optical band-gap energy and an increase in the photoinactivation of the bacteria. Sol-gel TiO2 coatings were deposited on the α-Fe2O 3 (200 nm)/glass films, and... 

    Graphene nanomesh by ZnO nanorod photocatalysts

    , Article ACS Nano ; Volume 4, Issue 7 , 2010 , Pages 4174-4180 ; 19360851 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    Local photodegradation of graphene oxide sheets at the tip of ZnO nanorods was used to achieve semiconducting graphene nanomeshes. The chemically exfoliated graphene oxide sheets, with a thickness of ∼0.9 nm, were deposited on quartz substrates. Vertically aligned ZnO nanorod arrays with diameters of 140 nm and lengths of <1 μm were grown on a glass substrate by using a hydrothermal method. The graphene oxide sheets were physically attached to the tip of the ZnO nanorods by assembling the sheets on the nanorods. UV-assisted photodegradation of the graphene oxide sheets (with dimension of ∼5 × 5 μm) at a contact place with the ZnO nanorods resulted in graphene nanomeshes with a pore size of... 

    Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets

    , Article Carbon ; Volume 81, Issue 1 , 2015 , Pages 158-166 ; 00086223 (ISSN) Akhavan, O ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Bacteriorhodopsin (bR) molecules were utilized as light-driven proton pumps for green as well as effective reduction of single-layer graphene oxide (GO) sheets. The bR molecules and graphene sheets were separated from each other in an aqueous environment by using a polytetrafluoroethylene membrane filter, in order to prevent their direct interactions (including attachment of the bR molecules onto the GO). Although reduction of GO using hydrazine or bR showed similar deoxygenation levels (based on X-ray photoelectron spectroscopy), the former resulted in formation of CAN bonds which can substantially decrease the electrical conductivity of the reduced sheets. The electrical characteristics of... 

    AFM spectral analysis of self-agglomerated metallic nanoparticles on silica thin films

    , Article Current Nanoscience ; Volume 6, Issue 1 , 2010 , Pages 116-123 ; 15734137 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    Stochastic parameters of self-agglomerated metallic nanoparticles on a dielectric film surface were studied using atomic force microscopy (AFM) analysis. In this regard, the rough surfaces including the nanoparticles were analyzed and characterized using structure function, roughness exponent and power spectrum density of the AFM profiles and their gradients, for different metal concentrations and heat treatment temperatures. The diffusion parameters, such as activation energy, of the nanoparticles initially accumulated on the surface into a porous and aqueous silica thin film were obtained using the AFM spectral analysis of the profiles and their gradients. It was found that the tip... 

    The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets

    , Article Carbon ; Volume 48, Issue 2 , February , 2010 , Pages 509-519 ; 00086223 (ISSN) Akhavan, O ; Sharif University of Technology
    2010
    Abstract
    Graphene thin films with very low concentration of oxygen-containing functional groups were produced by reduction of graphene oxide nanosheets (prepared by using a chemical exfoliation) in a reducing environment and using two different heat treatment procedures (called one and two-step heat treatment procedures). The effects of heat treatment procedure and temperature on thickness variation of graphene platelets and also on reduction of the oxygen-containing functional groups of the graphene oxide nanosheets were studied by atomic force microscopy and X-ray photoelectron spectroscopy. While formation of the thin films composed of single-layer graphene nanosheets with minimum thickness of... 

    Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation

    , Article Journal of Colloid and Interface Science ; Volume 336, Issue 1 , 2009 , Pages 117-124 ; 00219797 (ISSN) Akhavan, O ; Sharif University of Technology
    2009
    Abstract
    Photodegradation of Escherichia coli bacteria in presence of Ag-TiO2/Ag/a-TiO2 nanocomposite film with an effective storage of silver nanoparticles was investigated in the visible and the solar light irradiations. The nanocomposite film was synthesized by sol-gel deposition of 30 nm Ag-TiO2 layer on ∼200 nm anatase(a-)TiO2 film previously doped by silver nanoparticles. Both Ag/a-TiO2 and Ag-TiO2/Ag/a-TiO2 films were transparent with a SPR absorption band at 412 nm. Depth profile X-ray photoelectron spectroscopy showed metallic silver nanoparticles with diameter of 30 nm and fcc crystalline structure were self-accumulated on the film surface at depth of 5 nm of the TiO2 layer and also at the... 

    Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system

    , Article Journal of Materials Chemistry B ; Volume 4, Issue 19 , 2016 , Pages 3169-3190 ; 20507518 (ISSN) Akhavan, O ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Although graphene/stem cell-based tissue engineering has recently emerged and has promisingly and progressively been utilized for developing one of the most effective regenerative nanomedicines, it suffers from low differentiation efficiency, low hybridization after transplantation and lack of appropriate scaffolds required in implantations without any degrading in functionality of the cells. In fact, recent studies have demonstrated that the unique properties of graphene can successfully resolve all of these challenges. Among various stem cells, neural stem cells (NSCs) and their neural differentiation on graphene have attracted a lot of interest, because graphene-based neuronal tissue... 

    Silver nanocube crystals on titanium nitride buffer layer

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 10 , 2009 ; 00223727 (ISSN) Akhavan, O ; Sharif University of Technology
    2009
    Abstract
    Thermally stable cubic silver nanoparticles were grown by simply annealing a silver nano-thickness layer on a crystalline TiN buffer layer deposited on a Si(1 0 0) substrate. Formation of silver nanocubes was investigated by scanning electron microscopy, atomic force microscopy, x-ray diffractometry and UV-visible spectroscopy. The shapes of the silver nanoparticles were controlled by the thickness of the Ag layer. The silver nanocubes were self-ordered single crystals bounded mainly by {1 0 0} facets. It was found that a change in the shape of the nanoparticles from semi-spherical to cubic resulted in a substantial variation of their surface plasmon resonance absorption peak from 410 to 590... 

    Chemical durability of metallic copper nanoparticles in silica thin films synthesized by sol-gel

    , Article Journal of Physics D: Applied Physics ; Volume 41, Issue 23 , November , 2008 ; 00223727 (ISSN) Akhavan, O ; Sharif University of Technology
    2008
    Abstract
    In this study, chemical durability of metallic copper nanoparticles dispersed in sol-gel silica thin films was investigated by exposing the films to air after a reduction process. At first, heat treatment in air for 1 h produced silica films containing crystalline cupric oxide nanoparticles agglomerated on the film surface. Subsequently, reduction of the oxidized films in a reducing environment of N2-H2 for another 1 h at temperatures of 400, 500 and 600 °C resulted in the formation of crystalline metallic Cu nanoparticles diffused in the silica matrix. The time evolution of the surface plasmon resonance absorption peak of the reduced Cu nanoparticles was studied after the reduction... 

    Interplay of magnetism and superconductivity

    , Article Physica Status Solidi (A) Applications and Materials Science ; Volume 203, Issue 11 , 2006 , Pages 2956-2961 ; 18626300 (ISSN) Akhavan, M ; Sharif University of Technology
    2006
    Abstract
    After about two decades of intense research since the discovery of high-temperature superconductivity (HTSC) in cuprates, although many aspects of the physics and chemistry of these cuprate superconductors are now well understood, the underlying pairing mechanism remains elusive. Magnetism and superconductivity are usually thought as incompatible, but in number of special materials including HTSCs these two mutually excluding mechanisms are found to coexist. The presence in a system of superconductivity and magnetism, gives rise to a large number of interesting phenomenon. This article provides perspective on recent developments and their implications for our understanding of the interplay... 

    The question of Pr in HTSC

    , Article Proceedings of the Second Regional Conference on Magnetic and (MSS-01), Irbid, 9 September 2001 through 13 September 2001 ; Volume 321, Issue 1-4 , 2002 , Pages 265-282 ; 09214526 (ISSN) Akhavan, M ; Sharif University of Technology
    2002
    Abstract
    Among all the rare earth elements, Pr is known to behave as a singularity in the high-Tc families. When high-temperature cuprates are doped with Pr the superconductivity is quenched, and a metal insulator transition occurs. The origin of this behavior, being of fundamental interest, may also shed light on the mechanism of high-temperature superconductivity, since any reasonable theory for this mechanism should explain the behavior of the Pr-based system. The physical properties and the several theories which have been proposed to describe the anomalous behavior of Pr-doped systems in the normal and superconducting states are reviewed. © 2002 Elsevier Science B.V. All rights reserved  

    Ba@Pr or Pr@Ba in R123 HTSC - To be or not to be SC

    , Article Physica Status Solidi (B) Basic Research ; Volume 241, Issue 6 , 2004 , Pages 1242-1250 ; 03701972 (ISSN) Akhavan, M ; Sharif University of Technology
    2004
    Abstract
    In spite of the vast amount of experimental and theoretical knowledge accumulated in HTSC, the nature of the interaction driving charge carriers to form Cooper pairs below Tc is still unknown. To elucidate the controversial insulating/SC Pr123, the substitution of Pr at Ba site (Pr@Ba) with Ba at Pr site (Ba@Pr) in R123 is compared and reviewed. This might shed some light on the microscopic origin of HTSC. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim