Loading...
Search for: akhshik--siamak
0.11 seconds

    Clustering fossils in solid inflation

    , Article Journal of Cosmology and Astroparticle Physics ; Volume 2015, Issue 5 , May , 2015 ; 14757516 (ISSN) Akhshik, M ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    In solid inflation the single field non-Gaussianity consistency condition is violated. As a result, the long tenor perturbation induces observable clustering fossils in the form of quadrupole anisotropy in large scale structure power spectrum. In this work we revisit the bispectrum analysis for the scalar-scalar-scalar and tensor-scalar-scalar bispectrum for the general parameter space of solid. We consider the parameter space of the model in which the level of non-Gaussianity generated is consistent with the Planck constraints. Specializing to this allowed range of model parameter we calculate the quadrupole anisotropy induced from the long tensor perturbations on the power spectrum of the... 

    Review of Hot Dark Matter Candidates

    , M.Sc. Thesis Sharif University of Technology Akhshik, Mohammad (Author) ; Golshani, Mehdi (Supervisor)
    Abstract
    Nucleosynthesis and CMB data clearly indicate that most of the matter
    in the universe is dark and non-baryonic. There’s no shortage of particle
    physics candidates for this dark matter. This candidates can be classified
    according to whether the dark matter particles originated via decoupling
    from thermal bath or were created in some non thermal process. Thermal relics can be categorized further as to whether they were relatvistic or nonrelativistic at the moment of decoupling. The relics which were relatvistic at this time constitute hot dark matter, while those which where nonrelativistic constitute cold dark matter. The goal of this thesis is reviewing hot dark matter... 

    Development of a Three Layer Model for Simulating Transient Behavior Cutting Transport in Extended-reach Well

    , Ph.D. Dissertation Sharif University of Technology Akhshik, Siamak (Author) ; Behzad, Mehdi (Supervisor)
    Abstract
    A major concern in directional well drilling is the transport mechanism of cuttings by drilling fluid. This thesis describes the effect of angular velocity and postbuckled vibrations of drillstring on cuttings transport in a directional well drilling. The analysis proceeds in two stages. First, a finite element model is used to predict the dynamic behavior of postbuckled drillstring inside a directional well. Second, a coupled Computational Fluid Dynamics and Discrete Element Method (CFD-DEM) approach to simulate the cuttings transport considering the dynamic collision process. In the combined computational fluid dynamics and discrete element method (CFD-DEM), the fluid phase is treated... 

    Anisotropic and Asymmetric Early Universe

    , Ph.D. Dissertation Sharif University of Technology Akhshik, Mohammad (Author) ; Mansouri, Reza (Supervisor)
    Abstract
    Inflation is the leading paradigm for the theory of early universe and the mechanism for generating the seeds of perturbation in cosmic microwave background and large scale structure. In this thesis various aspects of primordial anisotropies and the effects of long mode during inflation are studied. There exist two powerful tools in studying the effects of super-horizon inflationary perturbations, namely, Maldacena’s consistency condition and Weinberg’s theorem. However, there are inflationary models, such as solid inflation and non-attractor inflation, which evade these theorems and in this thesis we study their consequences and features. At first we study statistical anisotropy in the... 

    CFD-DEM modeling of cuttings transport in underbalanced drilling considering aerated mud effects and downhole conditions

    , Article Journal of Petroleum Science and Engineering ; Volume 160 , 2018 , Pages 229-246 ; 09204105 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This paper presents a developed CFD (Computational fluid dynamics)-DEM (Discrete elements method) model to study the cuttings transportation in aerated mud drilling process for inclined annuli at downhole conditions. The model is conducted to determine the effects of liquid flow rate, air injection rate, annulus inclination angle, elevated temperature and pressure on the cuttings transport efficiency. The motion of the fluid is computed using CFD based approach with gas–liquid interface capturing provided by the volume-of-fluid (VOF) method. The dynamics of cutting phase is studied by DEM using soft sphere approach in order to take into account the particle collision phenomenon. The... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; 2021 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; 2021 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Computer simulation of the effect of particle stiffness coefficient on the particle-fluid flows

    , Article Particulate Science and Technology ; Volume 40, Issue 2 , 2022 , Pages 233-242 ; 02726351 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The Computational fluid dynamics (CFD)–discrete element method (DEM) numerical simulation may be applied to predict the hydrodynamic behavior of dense particle–fluid flows. The main drawback of this simulation is the long computational time required owing to the large number of particles and the minute time-step required to maintain a stable solution. In this work, a new method to improve the efficiency and accuracy of CFD–DEM simulations is presented. The particle stiffness coefficient is used as a flexible parameter to improve the accuracy and efficiency of the model. The particle concentration distribution results are compared with experimental one’s to derive the optimum effective... 

    Simulation of proppant transport at intersection of hydraulic fracture and natural fracture of wellbores using CFD-DEM

    , Article Particuology ; Volume 63 , 2022 , Pages 112-124 ; 16742001 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Proppants transport is an advanced technique to improve the hydraulic fracture phenomenon, in order to promote the versatility of gas/oil reservoirs. A numerical simulation of proppants transport at both hydraulic fracture (HF) and natural fracture (NF) intersection is performed to provide a better understanding of key factors which cause, or contribute to proppants transport in HF–NF intersection. Computational fluid dynamics (CFD) in association with discrete element method (DEM) is used to model the complex interactions between proppant particles, host fluid medium and fractured walls. The effect of non-spherical geometry of particles is considered in this model, using the multi-sphere... 

    Simulation of the interaction between nonspherical particles within the CFD–DEM framework via multisphere approximation and rolling resistance method

    , Article Particulate Science and Technology ; 2015 , Pages 1-11 ; 02726351 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    The particle shape is an important factor playing critical role in evaluation of the interactions between particles in high-concentration particle-fluid flows. In this paper, the well-known multisphere (MS) approximation approach and the novel rolling resistance approach are utilized to examine their performance in order to simplify the generalized shaped particle’s interactions within the framework of discrete element method (DEM) and computational fluid dynamics (CFD). The performance of two approaches are compared with the perfect particle’s shape geometry, for the limited cases of cubic-shaped and disk-shaped particle flows in a horizontal well drilling process as a reference scenario.... 

    Cosmological perturbations and the Weinberg theorem

    , Article Journal of Cosmology and Astroparticle Physics ; Volume 2015, Issue 12 , 2015 ; 14757516 (ISSN) Akhshik, M ; Firouzjahi, H ; Jazayeri, S ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    The celebrated Weinberg theorem in cosmological perturbation theory states that there always exist two adiabatic scalar modes in which the comoving curvature perturbation is conserved on super-horizon scales. In particular, when the perturbations are generated from a single source, such as in single field models of inflation, both of the two allowed independent solutions are adiabatic and conserved on super-horizon scales. There are few known examples in literature which violate this theorem. We revisit the theorem and specify the loopholes in some technical assumptions which violate the theorem in models of non-attractor inflation, fluid inflation, solid inflation and in the model of pseudo... 

    CFD-DEM approach to investigate the effect of drill pipe rotation on cuttings transport behavior

    , Article Journal of Petroleum Science and Engineering ; Volume 127 , 2015 , Pages 229-244 ; 09204105 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    2015
    Abstract
    Increasing cuttings bed height is a serious concern during extended-reach well drilling. In order to predict and prevent cuttings bed height increase, it is essential to study how the critical parameters influence the cuttings transport, especially the drill pipe rotation effects on the cuttings transport process. In conventional models for cuttings transport, the dynamic behavior of particles due to drill pipe rotation is neglected or empirically simplified. This paper presents a coupled Computational Fluid Dynamics and Discrete Element Method (CFD-DEM) approach to simulate the cuttings transport considering the dynamic collision process. The fluid phase is treated as an Eulerian continuum... 

    CFD-DEM Model for Simulation of Non-spherical Particles in Hole Cleaning Process

    , Article Particulate Science and Technology ; Volume 33, Issue 5 , 2015 , Pages 472-481 ; 02726351 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    During the well drilling process, particles are produced in different shapes. The shape of particles can influence the characteristics of particles transport process. The aim of this work is to analyze the effects of particle shape on the transportation mechanism. For this purpose, a three-dimensional model is prepared for simulation of particle transportation with spherical and non-spherical shapes, during deviated well drilling. The motion of particles and the non-Newtonian fluid flow are simulated via discrete element method and CFD, respectively. The two-way coupling scheme is used to incorporate the effects of fluid-particle interactions. Three different samples of non-spherical shapes... 

    Effective field theory of non-attractor inflation

    , Article Journal of Cosmology and Astroparticle Physics ; Volume 2015, Issue 7 , 2015 ; 14757516 (ISSN) Akhshik, M ; Firouzjahi, H ; Jazayeri, S ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    We present the model-independent studies of non attractor inflation in the context of effective field theory (EFT) of inflation. Within the EFT approach two independent branches of non-attractor inflation solutions are discovered in which a near scale-invariant curvature perturbation power spectrum is generated from the interplay between the variation of sound speed and the second slow roll parameter η. The first branch captures and extends the previously studied models of non-attractor inflation in which the curvature perturbation is not frozen on super-horizon scales and the single field non-Gaussianity consistency condition is violated. We present the general expression for the amplitude... 

    Simulation of the interaction between nonspherical particles within the CFD–DEM framework via multisphere approximation and rolling resistance method

    , Article Particulate Science and Technology ; Volume 34, Issue 4 , 2016 , Pages 381-391 ; 02726351 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    The particle shape is an important factor playing critical role in evaluation of the interactions between particles in high-concentration particle-fluid flows. In this paper, the well-known multisphere (MS) approximation approach and the novel rolling resistance approach are utilized to examine their performance in order to simplify the generalized shaped particle’s interactions within the framework of discrete element method (DEM) and computational fluid dynamics (CFD). The performance of two approaches are compared with the perfect particle’s shape geometry, for the limited cases of cubic-shaped and disk-shaped particle flows in a horizontal well drilling process as a reference scenario.... 

    CFD-DEM simulation of the hole cleaning process in a deviated well drilling: the effects of particle shape

    , Article Particuology ; Volume 25 , 2016 , Pages 72-82 ; 16742001 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    2016
    Abstract
    We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). This numerical method allows us to incorporate the fluid-particle interactions (drag force, contact force, Saffman lift force, Magnus lift force, buoyancy force) using momentum exchange and the non-Newtonian behavior of the fluid. The interactions of particle-particle, particle-wall, and particle-drill pipe are taken into account with the Hertz-Mindlin model. We compare the transport of spheres with non-spherical particles (non-smooth sphere, disc, and cubic) constructed via the... 

    On the particle–particle contact effects on the hole cleaning process via a CFD–DEM model

    , Article Particulate Science and Technology ; 2016 , Pages 1-8 ; 02726351 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    The accurate and precise computational models in order to predict the hole cleaning process is one of the helpful assets in drilling industries. Besides the bulk properties such as the flow velocity, particles average size, cleaning fluid properties, etc., that will affect the cleaning process, there is an unanswered question about the microscopic properties of the particles, particularly those which determines the contact characteristics: Do those play a major role or not? The rudimentary answer is not. The first purpose of the present work is to answer this question via a developed computational fluid dynamics coupled with discrete element method (CFD–DEM) in which the six unknown rolling... 

    Statistical anisotropies in gravitational waves in solid inflation

    , Article Journal of Cosmology and Astroparticle Physics ; Vol. 2014,Issue. 9 , 2014 ; ISSN: 14054179 Akhshik, M ; Emami, R ; Firouzjahi, H ; Wang, Y ; Sharif University of Technology
    2014
    Abstract
    Solid inflation can support a long period of anisotropic inflation. We calculate the statistical anisotropies in the scalar and tensor power spectra and their cross-correlation in anisotropic solid inflation. The tensor-scalar cross-correlation can either be positive or negative, which impacts the statistical anisotropies of the TT and TB spectra in CMB map more significantly compared with the tensor self-correlation. The tensor power spectrum contains potentially comparable contributions from quadrupole and octopole angular patterns, which is different from the power spectra of scalar, the cross-correlation or the scalar bispectrum, where the quadrupole type statistical anisotropy dominates... 

    A study on Warm Rolling Behavior of an Austenitic Stainless Steel and the Mechanical Properties of the Rolled Product

    , M.Sc. Thesis Sharif University of Technology Ghadamgahi, Mojtaba (Author) ; Serajzade, Siamak (Supervisor)
    Abstract
    In this study, thermo-mechanical behavior of an austenitic stainless steel AISI316L was investigated using mathematical modeling and experimental analysis during warm rolling process. First, the thermo-mechanical analysis was carried out employing the finite element software, Abaqus CAE, to assess temperature, strain, velocity and stress distribution during rolling. Then, rolling operations on 316L austenitic steel were performed under different working conditions while mechanical testing as well as microstructural observations were made on the rolled steels. Using simulation results and practical data, microstructural events and mechanical properties after warm rolling of stainless steel... 

    Effect of Strain Path on Static Recrystallization Behavior of a Steel

    , M.Sc. Thesis Sharif University of Technology Afshari, Elham (Author) ; Serajzadeh, Siamak (Supervisor)
    Abstract
    Static recrystllization in low carbon steel after two type of deformation –sidepress as an inhomogeneous deformation and rolling as a common industrial process - has been simulated using Cellular Automata (CA). The finite element method was utilized to compute the strain and stored energy distribution due to deformation. The initial microstructures were created by simulation of recrystallization with homogeneous site-saturated nucleation and topologic deformation was also considered in model. Subsequently using the result of FEM, stored energy of deformation was calculated and transferred into a two dimensional CA lattice. Nucleation rate and grain boundary velocity were considered...