Loading...
Search for:
amini--setayesh
0.155 seconds
Total 451 records
Hibert Scheme and Gromov-Witten Invariant
, M.Sc. Thesis Sharif University of Technology ; Safdari, Mohammad (Supervisor) ; Setayesh, Iman (Co-Supervisor)
Abstract
The aim of these notes is to describe an exciting chapter in the recent development of quantum cohomology. Guided by ideas from physics, a remarkable structure on the solutions of certain rational enumerative geometry problems has been found: the solutions are coefficients in the multiplication table of a quantum cohomology ring. Associativity of the ring yields non-trivial relations among the enumerative solutions. In many cases, these relations suffice to solve the enumerative problem. For example, let $N_d$ be the number of degree $d$, rational plane curves passing through $3d$ − $1$ general points in $\mathbb{P}^2$. Since there is a unique line passing through 2 points, $N_1 = 1$. The...
Enhanced recovery and recycling of catalyst by post-impregnation of γ-Al2O3 with 12-tungstophosphoric acid for esterification reaction
, Article Canadian Journal of Chemical Engineering ; Volume 96, Issue 5 , 2018 , Pages 1176-1184 ; 00084034 (ISSN) ; Rahman Setayesh, S ; Sharif University of Technology
Wiley-Liss Inc
2018
Abstract
12-tungstophosphoric acid, polyoxometalate with Keggin structure, and γ-Al2O3 were synthesized. Loading of 12-tungstophosphoric acid (HPW) on γ-Al2O3 was performed by the post-impregnation method. The catalysts were characterized by XRD, SEM, FTIR, BET, and DRS techniques. According to the pertinent observation, using the post-impregnation method promises the stability of polyoxometalate Keggin structure after loading on γ-Al2O3 support. The stability of 20 %HPW/Al2O3 was also confirmed by a leaching test. Textural characterization demonstrates that HPW on the γ-Al2O3 had a much larger surface area as compared with the pure HPW. The 20 %HPW/Al2O3 exhibited roughly high activity toward an...
Theoretical studies of the influence of protic and aprotic ionic liquids on the basicity of CaO as a solid base catalyst
, Article Chemical Physics ; Volume 504 , 2018 , Pages 31-37 ; 03010104 (ISSN) ; Rahman Setayesh, S ; Sharif University of Technology
Elsevier B.V
2018
Abstract
Proton affinity (PAs) and molecular basicities (GBs) of the CaO cluster and CaO modified with protic and aprotic ionic liquids in the gas phase have been calculated at the DFT/B3LYP level with a 6-311++G (d, p) basis set. The investigations of PAs and GBs in the solution phase have been studied by means of SCRF solvent effect computations using PCM solvation model for water solvent. The influence of the ILs cations and anions on the PA and GB in the gas phase and solution at the same level of theory has been investigated. We also studied the effect of [bmTr][NO3] ionic liquid on the basicity of CaO. The calculations display that this energetic ionic liquid has a high ability to improve the...
Effective degradation of Reactive Red 195 via heterogeneous electro-Fenton treatment: theoretical study and optimization
, Article International Journal of Environmental Science and Technology ; Volume 16, Issue 10 , 2019 , Pages 6329-6346 ; 17351472 (ISSN) ; Rahman Setayesh, S ; Sharif University of Technology
Center for Environmental and Energy Research and Studies
2019
Abstract
Abstract: The magnetite (Fe3O4) nanoparticles were synthesized and supported on the reduced graphene oxide. The characterization of the catalyst was performed by FT-IR, VSM, SEM, XRD, and BET techniques. The obtained results indicated that the in situ synthesis of Fe3O4 using coprecipitation method caused the homogenous formation of magnetite nanoparticles on the surface of reduced graphene oxide (average particle size ~ 71.032 nm) with high stability and catalytic activity toward electro-Fenton removal of Reactive Red 195. The effect of various factors (current intensity, initial pollutant concentration, catalyst weight, and pH) was evaluated by response surface methodology using central...
Efficient Fe/CuFeO2/rGO nanocomposite catalyst for electro-Fenton degradation of organic pollutant: Preparation, characterization and optimization
, Article Applied Organometallic Chemistry ; Volume 33, Issue 10 , 2019 ; 02682605 (ISSN) ; Rahman Setayesh, S ; Sharif University of Technology
John Wiley and Sons Ltd
2019
Abstract
The nanocomposite of zero-valent iron and delafossite CuFeO2 supported on reduced graphene oxide was synthesized for the first time to evaluate its performance as the heterogeneous catalyst toward electro-Fenton (EF) removal of catechol. X-ray diffraction, Fourier transform-infrared, scanning electron microscopy and Brunauer–Emmett–Teller (BET) were used to characterize the nanocomposite. It was found that the rhombohedral structure of CuFeO2 remained stable during the nanocomposite preparation. The BET surface area of the nanocomposite increased about 102 times in comparison with bare CuFeO2. The influence of the operating parameters was investigated. The optimum operating conditions were...
Designed model for the Morita–Baylis–Hillman reaction mechanism in the presence of CaO and CaO modified with ionic liquid as a solid base catalyst: a DFT and MP2 investigation
, Article Theoretical Chemistry Accounts ; Volume 137, Issue 9 , 2018 ; 1432881X (ISSN) ; Rahman Setayesh, S ; Sharif University of Technology
Springer New York LLC
2018
Abstract
The new model for the Morita–Baylis–Hillman reaction based on the proton transfer were inquired by MP2 and DFT methods with 6-311G++(d, p) basis set combined with IEF-PCM solvent model. We focused on the reaction between acrylonitrile and benzaldehyde, catalyzed by CaO cluster and CaO modified with [Pyr][HSO4] ionic liquid. Our results indicate that in the presence of ionic liquid, the ionic liquid acts as a shuttle for the proton transfer between species in a lower energy pathway. The proton transfer step from enolate to catalyst is predicted to be the rate-limiting step for the whole process. In order to investigate the catalyst basicity, the pKa values of acrylonitrile and methyl acrylate...
A comparison between the minimum-order & full-order observers in robust control of the air handling units in the presence of uncertainty
, Article Energy and Buildings ; Volume 91 , 15 March , 2015 , Pages 115-130 ; ISSN: 3787788 ; Moradi, H ; Alasty, A ; Sharif University of Technology
2015
Abstract
Control of the air-handling units (AHU) is required to maintain satisfactory comfort conditions with low energy consumption. In the case of failure in sensor fusion systems of AHUs, full-order observers can be used as the supportive tool to provide an acceptable estimation of state variables. In this paper, a multivariable nonlinear model of the AHU is considered in the presence of uncertainties. The indoor temperature and relative humidity are controlled via manipulation of valve positions of air and cold water flow rates. In proposed hybrid control system, full and minimum-order observers are designed for the estimation of indoor temperature and relative humidity. Also, a regulator for...
Nonlinear robust control of air handling units to improve the indoor air quality & CO2 concentration: A comparison between H∞ & decoupled sliding mode controls
, Article Applied Thermal Engineering ; Volume 160 , 2019 ; 13594311 (ISSN) ; Moradi, H ; Alasty, A ; Sharif University of Technology
Elsevier Ltd
2019
Abstract
Air-handling units (AHUs) are the installations responsible for the control of temperature and humidity inside a space using the heating, cooling, humidifier and drying air components. In this research, a multivariable nonlinear dynamic model of the AHU with one zone in the VAV (variable air volume) system for working in the summer is considered. The indoor temperature, relative humidity and carbon dioxide concentration are controlled via manipulation of the valve positions of the air flow rate, cold water flow rate and fresh air percent. Due to the complexity and nonlinearity of AHU model and also the existence of various operating points and uncertainty, model uncertainties are included....
Prediction of Density, Surface Tension and Viscosity of Ionic Liquids using Artificial Intelligence
, M.Sc. Thesis Sharif University of Technology ; Rahman Setayesh, Shahrbanoo (Supervisor)
Abstract
Ionic liquids due to their unique physical and chemical properties are widely used in various fields of chemistry and chemical engineering. Determining properties of ionic liquids can be difficult, time consuming or even impossible. In first step of this study the IL thermo database was chosen as source of experimental data of ionic liquids. Viscosity, density, surface tension and melting temperature of ionic liquids based on bis(trifluoromethylsulfonyl)imide anion with cations imidazolium, pyridinium, pyrrolidinium, piperidinium and ammonium were modeled using QSPR approach. Linear and nonlinear models were built by means of multiple linear regression (MLR), multilayer perceptron neural...
Preparation, Characterization and Catalytic Application of Some Polyoxometalates for Esterification Reaction
, M.Sc. Thesis Sharif University of Technology ; Rahman Setayesh, Shahrbanoo (Supervisor)
Abstract
Catalytic esterification of acetic acid with 1-hexanol was investigated over polyoxometalates. H3PW12O40 and H3PMo6W6O40 polyoxometalates with keggin structures were synthesized. Catalytic activity and recyclability of them were improved by loading on the γ-Al2O3 with impregnation method and Cs, K and NH4 salts preparing.Catalysts were characterized by XRD, SEM, FT-IR, BET, DRS and NMR techniques. According to XRD's results, catalysts have ace-centered cubic crystal systems. Loading on supports and preparing the salts do not destroy the structures of polyoxometalates. SEM images show the uniformity of catalysts' surface and catalysts' fixing on the support. It was seen that the keggin...
Electrochemical Degradation of Organic Pollutants in the Presence of Spinel Cobalt Ferrite Nanoparticles: Investigation of the Effective Parameters and Evaluation of Degradation Kinetics
, M.Sc. Thesis Sharif University of Technology ; Rahman Setayesh, Shahrbanoo (Supervisor)
Abstract
In this study, CoFe2O4/CuO nanocomposite was synthesized by hydrothermal method and utilized for removal of metronidazole in electro-Fenton process. Nanocomposite was characterized by FT-IR, XRD, FE-SEM, VSM and BET methods. The Results of XRD patterns confirmed the monoclinic structure formation for copper(Ⅱ) oxide and the spinel structure for CoFe2O4. The FE-SEM images displayed the formation of CuO nanosheets for copper(Ⅱ) oxide and the decoration of cobalt ferrite nanoparticles on the surface of CuO nanosheets. Measurement of the surface area of nanocatalysts using BET isotherm represented the high surface area for CuO nanosheets and the increase of surface area of nanocomposite in...
Theoretical Study of Adsorption of Organic Pollutants on Polypyrrole with Density Functional Theory (DFT)
, M.Sc. Thesis Sharif University of Technology ; Rahman Setayesh, Shahrbanoo (Supervisor)
Abstract
Phenolic compounds, which are one of the most dangerous compounds for the environment, are present in many effluents of various industries such as petrochemicals and pharmaceuticals, and the need to eliminate these compounds is increasingly felt. In this study, adsorption of three compounds of para-chlorophenol, para-nitrophenol and hydroquinone on polypyrrole adsorbent in the form of neutral, charged, copolymer with polyaniline and phosphorus-doped have been investigated using density functional theory (DFT). Calculations are performed at two levels of b3lyp/6-31+G(d,p) and wb97xd/631+G(d,p) for two different orientations of adsorbate molecules that the correlation-exchange function wb97xd...
Synthesis of Solar Light Responsive Nanocatalysts and Investigation of their Performance in Water Splitting Reaction
, M.Sc. Thesis Sharif University of Technology ; Rahman Setayesh, Shahrbanoo (Supervisor)
Abstract
Today, fossil fuels cause countless environmental pollutants, so replacing fossil fuels with clean energy sources is very important. Water splitting using light and a semiconductor is one of the new methods of producing oxygen and hydrogen, which due to its simplicity and cheapness, has attracted a lot of attention today. In this study, ZnMn2O4 photocatalyst nanoparticles were first loaded on a graphitic carbon nitride support in different ratios of ZnMn2O4 and carbon support by hydrothermal method. Then the photocatalysts were evaluated for evolution of oxygen and hydrogen photocatalysts through water splitting under visible light. In ZnMn2O4 / g-C3N4 (80:20) nanocomposite, the highest...
Theoretical Study of Organic Pollutants Adsorption on Graphene, Doped Graphene and Defective Graphene Nanosheets
, M.Sc. Thesis Sharif University of Technology ; Rahman Setayesh, Shahrbanou (Supervisor)
Abstract
Among the xenobiotic compounds, chlorophenols are considered to be as the most dangerous compounds for the environment and living organisms. These compounds are abundantly found in the wastewater of many chemical industry factories. In this research, by using Gaussian software and density functional theory at the level of B3LYP / 6-31G (d, p),the adsorption of molecules such as phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol over graphene, nitrogen and boron doped graphene sheet are studied. The most stable configurations were determined and adsorption energies were calculated. In addition, to understand the adsorption mechanism, electron properties such as state density and...
Kinetics Investigation of Oxygen Evolution from Water Oxidation in the Presence of Bismuth Vanadate Nanocatalysts
, M.Sc. Thesis Sharif University of Technology ; Rahman Setayesh, Shahrbanoo (Supervisor)
Abstract
In this project, BiVO4 , Mn3O4 and BiVO4- Mn3O4 nanocatalysts were synthesized using the hydrothermal method. The properties of these nanocatalysts were determined by XRD, SEM, FT-IR, DRS, PL, ICP, EDX, BET and AA techniques. Analysys XRD patterns and SEM images of samples confirmed monoclinic structure for BiVO4 and tetragonal structure for Mn3O4. The DRS and PL spectra showed adctrease in the band gap and electron – hole pair recombination for BM 60:40 relative to BiVO4. Oxygen production was studied in the presence of different percentages of BiVO4 and Mn3O4 in BiVO4 - Mn3O4 nanocomposite and was observed that the 60:40 wt.% (Bismuth vanadate 60% and manganese oxide 40%) produced more...
Theoretical Investigation of Basicity and Proton Transfer Energy of Protic Energetic Ionic Liquids in the Gas Phase and in Solution
, M.Sc. Thesis Sharif University of Technology ; Rahman Setayesh, Shahrbanoo (Supervisor)
Abstract
The use of energetic ionic liquids as hypergolic fuels, has low toxicity and environmental risk relative the hypergolic fuels such as the hydrazine. In this research by using Gauss view and Gaussian softwares and density functional theory and MP2 methods at the level of B3LYP/6-311G(d,p), the proton transfer from the cations to anions for a set of hypergolic ionic liquids in the gas and solution phases were studied. The most stable configuration of cations and anions are determined. The interaction energies of the selected cations and anions, proton affinities and basicity properties of these hypergolic anions are calculated. The result represents that the lower proton affinity and basicity...
Kinetics Investigation of the Degradation of Environmental Pollutants by Electro-Fenton Processes Using Iron Vanadate Nanoparticles
, M.Sc. Thesis Sharif University of Technology ; Rahman Setayesh, Shahrbanoo (Supervisor)
Abstract
Nanocomposite FeVO4/CeO2 was synthesized by hydrothermal method and was applied for removal of methyl orange. This nanocomposite was characterized by SEM, FT-IR, XRD, BET methods. SEM images showed that FeVO4 nanorode decorated on CeO2 spherical particles. The results of XRD patterns confirmed the triclinic structure for Fe(III)vanadate and the cubic fluorite structure for cerium oxide. The surface area of FeVO4, CeO2 and FeVO4/CeO2 was determined by BET analysis which the results represented an increase in surface area in nanocomposite using cerium oxide as support. The electro-Fenton reaction was performed in undivided electrochemical reactor using stainless steel electrodes and the...
Kinetics Investigation of Environmental Pollutants Degradation in Advanced Oxidation Processes Using Metal Oxide Nanocatalysts
, Ph.D. Dissertation Sharif University of Technology ; Rahman Setayesh, Shahrbanoo (Supervisor)
Abstract
In this project, metal oxides loaded on different supports were used in the heterogeneous electro-Fenton (EF) process for organic pollutants removal. At first, Fe3O4/AC was synthesized for catechol degradation as a phenolic compound. 98.2% removal of catechol was achieved by operational conditions optimization. The catalytic activity of Fe3O4/AC was remained constant after 6 cycles. In the other study, reduced graphene oxide was used as a support for the magnetite nanoparticle catalyst. The catalytic activity of Fe3O4/rGO in EF degradation of reactive red 195 (RR195) dye was studied and 93.34% removal was obtained. Response surface methodology (RSM) was used and a quadratic model with...
Theoretical and Experemental Study of Solid Base Nanocatalysts (Metal Oxides) Modified by Ionic Liquids and Kinetics Investigation of Organic Reactions Such as Hillman and Biodiesel in the Presence of These Nanocatalysts
, Ph.D. Dissertation Sharif University of Technology ; Rahman Setayesh, Shahrbanoo (Supervisor)
Abstract
Thermodynamic quantities such as proton affinity (PA) and molecular basicity (GB) for (CaO)n nanoclusters with n=2–16 have been calculated using three computational models of the DFT (B3LYP, M06, PW91, CAM–B3LYP and ωB97XD functionals), MP2, and HF with the cc-PVNZ (n = D and T) basis set in the gas phase. Absolute deviation error (AAD%) indicates that obtained PA and GB values using DFT model and the B3LYP method with mean percentage errors of 0.77 and 0.90 %, respectively, have the higher accuracy than the other methods and models. Owing to the unique physical and chemical properties of ILs, can be used as catalysts, promoters and modifiers of catalyst in many organic reactions. Therefore,...
Characterisation of nanocrystalline sulfated titania modified with transition metals and aluminum as solid acids for esterification
, Article Progress in Reaction Kinetics and Mechanism ; Volume 41, Issue 1 , 2016 , Pages 57-66 ; 14686783 (ISSN) ; Abolhasani, E ; Ghasemi, S ; Sharif University of Technology
Science Reviews 2000 Ltd
2016
Abstract
TiO2, transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn)- and aluminum-doped TiO2 nanoparticles were prepared by the sol-gel technique. The sulfated catalysts were prepared by the impregnation method with H2SO4 solution. The catalysts were characterised by X-ray diffraction (XRD), BET surface area measurement, diffuse reflectance spectroscopy (DRS), and Fourier transform infrared (FTIR) techniques. The sulfate content of the metal-incorporated samples was considerably higher than for SO4 2-/TiO2. The metal doping brought about a considerable reduction in the extent of sulfate loss from the catalyst surface due to the wide dispersion on the surface. The SO4 2-/TiO2 and SO4 2-/M/TiO2...