Loading...
Search for: amiri--f
0.121 seconds

    Diagrammatic approach for constructing multiresolution of primal subdivisions

    , Article Computer Aided Geometric Design ; Volume 51 , 2017 , Pages 4-29 ; 01678396 (ISSN) Bartels, R ; Mahdavi Amiri, A ; Samavati, F ; Mahdavi Amiri, N ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    It is possible to define multiresolution by reversing the process of subdivision. One approach to reverse a subdivision scheme appropriates pure numerical algebraic relations for subdivision using the interaction of diagrams (Bartels and Samavati, 2011; Samavati and Bartels, 2006). However, certain assumptions carried through the available work, two of which we wish to challenge: (1) the construction of multiresolutions for irregular meshes are reconsidered in the presence of any extraordinary vertex rather than being prepared beforehand as simple available relations and (2) the connectivity graph of the coarse mesh would have to be a subgraph of the connectivity graph of the fine mesh. 3... 

    An efficient weighted least squares estimator for elliptic localization in distributed mimo radars

    , Article IEEE Signal Processing Letters ; Volume 24, Issue 6 , 2017 , Pages 902-906 ; 10709908 (ISSN) Amiri, R ; Behnia, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Elliptic localization is an active range-based positioning technique that employs multiple transmitter-receiver pairs, each of which is able to provide separate bistatic range (BR) measurement. In this letter, an algebraic closed-form method for locating a single target from BR measurements using a distributed multiple-input multiple-output (MIMO) radar system is proposed. First, a set of linear equations is established by eliminating the nuisance parameters, and then, a weighted least squares estimator is employed to obtain the target position estimate. To refine the localization performance, the error in the initial solution is estimated in the sequence. The proposed method is shown... 

    A methodology for analyzing the transient availability and survivability of a system with repairable components

    , Article Applied Mathematics and Computation ; Volume 184, Issue 2 , 2007 , Pages 300-307 ; 00963003 (ISSN) Amiri, M ; Ghassemi Tari, F ; Sharif University of Technology
    2007
    Abstract
    In this paper we present a method for transient analysis of availability and survivability of a system with the identical components and identical repairmen. The considered system is supposed to consist of series of k-out-of-n or parallel components. We employed the Markov models, eigen vectors and eigenvalues for analyzing the transient availability and survivability of the system. The method is implemented through an algorithm which is tested in MATLAB programming environment. The new method enjoys a stronger mathematical foundation and more flexibility for analyzing the transient availability and survivability of the system. © 2006 Elsevier Inc. All rights reserved  

    A methodology for analyzing the transient reliability of systems with identical components and identical repairmen

    , Article Scientia Iranica ; Volume 14, Issue 1 , 2007 , Pages 72-77 ; 10263098 (ISSN) Amiri, M ; Ghassemi Tari, F ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    In this paper, the Markov models, eigenvectors and eigenvalue concepts are used to propose a methodology for analyzing the transient reliability of a system with identical components and identical repairmen. The components of the systems under consideration can have two distinct configurations, namely; they can be arranged in series or in parallel. A third case is also considered, in which the system is up (good) if k-out-of-n components are good. For all three cases, a procedure is proposed for calculating the transient probability of the system availability and the duration of the system to reach the steady state. © Sharif University of Technology, February 2007  

    NLOS identification in range-based source localization: statistical approach

    , Article IEEE Sensors Journal ; Volume 18, Issue 9 , 1 May , 2018 , Pages 3745-3751 ; 1530437X (ISSN) Abolfathi Momtaz, A ; Behnia, F ; Amiri, R ; Marvasti, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Least squares estimation is a widely-used technique for range-based source localization, which obtains the most probable position of mobile station. These methods cannot provide desirable accuracy in the case with a non line of sight (NLOS) path between mobile station and base stations. To circumvent this drawback, many algorithms have been proposed to identify and mitigate this error; however, they have a large run-time overhead. On the other hand, new positioning systems utilize a large set of base stations, and a practical algorithm should be fast enough to deal with them. In this paper, we propose a novel algorithm based on subspace method to identify and eliminate the NLOS error.... 

    Autoregressive modeling of the photoplethysmogram AC signal amplitude changes after flow-mediated dilation in healthy and diabetic subjects

    , Article 2012 19th Iranian Conference of Biomedical Engineering, ICBME 2012 ; 2012 , Pages 170-173 ; 9781467331302 (ISBN) Amiri, M ; Zahedi, E ; Behnia, F ; Sharif University of Technology
    2012
    Abstract
    It is proved that the endothelial (artery inner lumen cells) function is associated with cardiovascular risk factors. Among all the common non-invasive methods employed in the research setting for assessing endothelial function, flow-mediated dilation is the most widely used one. This technique measures endothelial function by inducing reactive hyperemia using temporary arterial occlusion and measuring the resultant relative increase in blood vessel diameter via ultrasound. In this paper, the limitations associated with the ultrasound technique are overcome by using the photoplethysmogram (PPG) signal recorded during FMD. The correctness of this approach is investigated by modeling the AC... 

    Strictly feasible solutions and strict complementarity in multiple objective linear optimization

    , Article 4OR ; 2016 , Pages 1-24 ; 16194500 (ISSN) Mahdavi Amiri, N ; Salehi Sadaghiani, F ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Recently, Luc defined a dual program for a multiple objective linear program. The dual problem is also a multiple objective linear problem and the weak duality and strong duality theorems for these primal and dual problems have been established. Here, we use these results to prove some relationships between multiple objective linear primal and dual problems. We extend the available results on single objective linear primal and dual problems to multiple objective linear primal and dual problems. Complementary slackness conditions for efficient solutions, and conditions for the existence of weakly efficient solution sets and existence of strictly primal and dual feasible points are... 

    Strictly feasible solutions and strict complementarity in multiple objective linear optimization

    , Article 4OR ; Volume 15, Issue 3 , 2017 , Pages 303-326 ; 16194500 (ISSN) Mahdavi Amiri, N ; Salehi Sadaghiani, F ; Sharif University of Technology
    2017
    Abstract
    Recently, Luc defined a dual program for a multiple objective linear program. The dual problem is also a multiple objective linear problem and the weak duality and strong duality theorems for these primal and dual problems have been established. Here, we use these results to prove some relationships between multiple objective linear primal and dual problems. We extend the available results on single objective linear primal and dual problems to multiple objective linear primal and dual problems. Complementary slackness conditions for efficient solutions, and conditions for the existence of weakly efficient solution sets and existence of strictly primal and dual feasible points are... 

    Efficient 3-D positioning using time-delay and AOA measurements in MIMO radar systems

    , Article IEEE Communications Letters ; 2017 ; 10897798 (ISSN) Amiri, R ; Behnia, F ; Zamani, H ; Sharif University of Technology
    2017
    Abstract
    This letter investigates the problem of threedimensional (3-D) target localization in multiple-input multipleoutput (MIMO) radars with distributed antennas, using hybrid timedelay (TD) and angle of arrival (AOA) measurements. We propose a closed-form positioning method based on weighted least squares (WLS) estimation. The proposed estimator is shown theoretically to achieve the Cramer-Rao lower bound (CRLB) under mild noise conditions. Numerical simulations also verify the theoretical developments. IEEE  

    Asymptotically efficient target localization from bistatic range measurements in distributed mimo radars

    , Article IEEE Signal Processing Letters ; Volume 24, Issue 3 , 2017 , Pages 299-303 ; 10709908 (ISSN) Amiri, R ; Behnia, F ; Zamani, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this letter, the problem of target localization from bistatic range (BR) measurements in distributed multiple-input multiple-output radar systems is investigated. By introducing nuisance parameters, a pseudolinear set of BR equations is established. Then, a closed-form localization algorithm is developed, based on this pseudolinear set of equations and multistage weighted least squares estimation. This solution is shown analytically to attain the Cramer-Rao lower bound under the small Gaussian noise assumption. Simulations are included to support the theoretical studies. Unlike the existing studies where the variance of BR measurements is assumed to be independent of the corresponding... 

    Imaging based on correlation function for buried objects identification

    , Article IEEE Sensors Journal ; Volume 18, Issue 18 , 2018 , Pages 7407-7413 ; 1530437X (ISSN) Gharamohammadi, A ; Behnia, F ; Amiri, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Ground-penetrating radar is usually employed to detect such buried objects beneath the ground as pipes, cables, and mines. There exist several methods for monitoring the buried objects, some of which require a relatively long time and heavy computations to create an appropriate image. The signal sent to the environment is reflected due to the characteristic features of the environment, which eventually leads to detection of the buried objects. For detection of the near ground surface targets, there is a very poor distinguishability between the signal reflected from the buried objects and the one from the ground itself. Buried objects in this case are detectable using ultra-wide band signals... 

    An efficient estimator for tdoa-based source localization with minimum number of sensors

    , Article IEEE Communications Letters ; 2018 ; 10897798 (ISSN) Amiri, R ; Behnia, F ; Noroozi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this letter, the problem of source localization using time difference of arrival (TDOA) is investigated. Then, a closedform two-stage solution is proposed based on estimation of the range nuisance parameter in the first stage and refinement of initial solution in the next stage. The proposed solution is shown analytically and verified by simulations to be an efficient estimate, which can attain the CRLB performance under mild Gaussian noise assumption. This method is able to locate the source with the minimum number of sensors required for N-dimensional localization. Numerical simulations demonstrate significant performance improvement of the proposed method compared with the... 

    Efficient algebraic solution for elliptic target localisation and antenna position refinement in multiple-input-multiple-output radars

    , Article IET Radar, Sonar and Navigation ; Volume 13, Issue 11 , 2019 , Pages 2046-2054 ; 17518784 (ISSN) Amiri, R ; Behnia, F ; Noroozi, A ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    In this study, an algebraic closed-form method for jointly locating the target and refining the antenna positions in multiple-input-multiple-output radar systems is proposed. First, a set of linear equations is formed by non-linear transformation and nuisance parameters elimination, and then, an estimate of the target position is obtained by employing a weighted least-squares estimator. To jointly refine the target and antenna positions, the associated error terms are estimated in the sequence. The proposed method is shown analytically and confirmed by simulations to attain the Cramér-Rao lower bound performance under small-error conditions. Numerical simulations are given to support the... 

    Efficient joint moving target and antenna localization in distributed MIMO radars

    , Article IEEE Transactions on Wireless Communications ; Volume 18, Issue 9 , 2019 , Pages 4425-4435 ; 15361276 (ISSN) Amiri, R ; Behnia, F ; Noroozi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a novel solution for the problem of joint moving target and antenna localization in the distributed multiple-input multiple-output (MIMO) radar systems is proposed. The localization problem in the presence of antenna location uncertainty is formulated as a maximum likelihood (ML) estimation problem, which is then recast into convex form by defining some auxiliary variables and applying semidefinite relation (SDR) technique. Next, an algebraic closed-form estimator is proposed to jointly estimate the target and the antennas error terms and refine their uncertain values. The proposed method is shown analytically and verified by the numerical simulations to be an efficient... 

    Closed-form positioning in MIMO radars with antenna location uncertainties

    , Article IET Radar, Sonar and Navigation ; Volume 13, Issue 9 , 2019 , Pages 1568-1579 ; 17518784 (ISSN) Amiri, R ; Behnia, F ; Zamani, H ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    In this study, the authors propose an algorithm to reduce the effect of antenna location uncertainty for locating moving targets in multiple-input multiple-output (MIMO) radar systems. The proposed method is a closed-form solution which employs the measurements of multiple independent targets to alleviate the antenna location uncertainties. The authors establish a pseudo-linear set of equations by using the range and the range-rate auxiliary parameters, which allows the problem to be solved using a two-stage weighted least squares estimator. The proposed method is shown analytically and confirmed by simulations to attain the Cramer-Rao lower bound under small error conditions. The... 

    A superlinearly convergent nonmonotone quasi-Newton method for unconstrained multiobjective optimization

    , Article Optimization Methods and Software ; Volume 35, Issue 6 , March , 2020 , Pages 1223-1247 Mahdavi Amiri, N ; Salehi Sadaghiani, F ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    We propose and analyse a nonmonotone quasi-Newton algorithm for unconstrained strongly convex multiobjective optimization. In our method, we allow for the decrease of a convex combination of recent function values. We establish the global convergence and local superlinear rate of convergence under reasonable assumptions. We implement our scheme in the context of BFGS quasi-Newton method for solving unconstrained multiobjective optimization problems. Our numerical results show that the nonmonotone quasi-Newton algorithm uses fewer function evaluations than the monotone quasi-Newton algorithm. © 2020 Informa UK Limited, trading as Taylor & Francis Group  

    Optimal sensor placement for 2-d range-only target localization in constrained sensor geometry

    , Article IEEE Transactions on Signal Processing ; Volume 68 , 2020 , Pages 2316-2327 Sadeghi, M ; Behnia, F ; Amiri, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Localization of an emitting or reflecting target is one of the most important issues in a wide range of applications including radar, sonar, wireless communication and sensor networks. Due to significant effect on the positioning accuracy, designing the optimal sensor-target geometry has been considered as an important problem in the localization literature. The existing sensor placement methods mainly solve the problem in the cases without any constraints on the sensors locations. In the realistic scenarios, however, the sensors cannot be placed simply in arbitrary locations due to such constraints as the geographical limitations, communication problems between the sensor pairs and the... 

    Window selection of the savitzky-golay filters for signal recovery from noisy measurements

    , Article IEEE Transactions on Instrumentation and Measurement ; Volume 69, Issue 8 , 2020 , Pages 5418-5427 Sadeghi, M ; Behnia, F ; Amiri, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    The Savitzky-Golay (SG) filtering is a widely used denoising method employed in different applications. The SG filter has two design parameters: the window length and the filter order. As the window length increases, the estimation variance is reduced, but at the same time, the bias error is increased. In this article, we obtain the optimal window length of an SG filter with an arbitrary order, based on minimizing the mean square error (mse), a well-known performance measure considering both the estimation bias and variance. To achieve the optimal window length, we propose an algorithm the performance of which is much better than the existing methods. In this article, we follow the viewpoint... 

    Ultrathin carbon nanoparticle composite film electrodes: distinguishing dopamine and ascorbate

    , Article Electroanalysis ; Volume 19, Issue 10 , 2007 , Pages 1032-1038 ; 10400397 (ISSN) Amiri, M ; Shahrokhian, S ; Marken, F ; Sharif University of Technology
    2007
    Abstract
    Ultrathin carbon nanoparticle-poly(diallyldimethylammonium chloride) films (CNP-PDDAC films) are formed on tin-doped indium oxide (ITO) electrodes in a layer-by-layer electrostatic deposition process employing 9-18 nm diameter carbon particles. Transparent and strongly adhering films of high electrical conductivity are formed and characterized in terms of their electrochemical reactivity. When immersed in aqueous 0.1 M phosphate buffer pH 7, each layer of CNP-PDDAC (of ca. 5-6 nm average thickness) is adding an interfacial capacitance of ca. 10 μF cm-2. Absorption into the CNP-PDDAC nanocomposite film is dominated by the sites in the PDDAC cationomer and therefore anionic molecules such as... 

    Application of bioaugmentation technology to improve the activated sludge treatment process in removal of aromatic compounds

    , Article 18th International Congress of Chemical and Process Engineering, CHISA 2008, Prague, 24 August 2008 through 28 August 2008 ; 2008 Yaghmaei, S ; Samie, S ; Amiri, F ; Sharif University of Technology
    2008
    Abstract
    The effects of bioaugmentation on maintaining the conventional activated sludge (CAS) system stability under shock loading conditions, standardizing the effluent, and improving the sludge settlement, were studied. Phenol was chosen as a model of mono-aromatic compounds, which are commonly found in the wastewaters of petroleum refineries and petrochemical industry in Iran. Bioaugmentation is a practical means to increase the resistance of a CAS system against shock loadings of recalcitrant compounds. It is also effective in removing hazardous compounds according to recommended standards. By using this method, there is no need to change CAS system construction, thus, it can be used simply and...