Loading...
Search for: arefi--khashayar
0.127 seconds

    Video Instance Segmentation via Spatio-temporal Embedding and Clustering

    , Ph.D. Dissertation Sharif University of Technology Arefi, Farnoosh (Author) ; Kasaei, Shohreh (Supervisor)
    Abstract
    Video Instance Segmentation is one of the newest tasks in computer vision, tasked with segmenting, categorizing, and tracking instances across video frames. This task is highly significant and applicable today in industries such as autonomous vehicles, surveillance systems, production lines, and medical video analysis. Generally, there are two approaches for solving the task of Video Instance Segmentation: the object-oriented approach and the pixel-oriented approach. In the object-oriented approach, after detecting instances at the image level, the segmentation and tracking processes are performed to link the instances. In the pixel-oriented approach, all spatial-temporal information is... 

    Application of a continuous kinetic model for the hydrocracking of vacuum gas oil

    , Article Petroleum Science and Technology ; Vol. 32, Issue. 18 , 2014 , Pages 2245-2252 ; ISSN: 10916466 Arefi, A ; Khorasheh, F ; Farhadi, F ; Sharif University of Technology
    2014
    Abstract
    Hydrocracking is one of the most versatile petroleum refining processes for production of valuable products including gasoline, gas oil, and jet fuel. In this paper, a five-parameter continuous lumping model was used for kinetic modeling of hydrocracking of vacuum gas oil (VGO). The model parameters were estimated from industrial data obtained from a fixed bed reactor operating at an average temperature of 400°C and residence time of 0.3 h. Product distributions were obtained in terms of the weight fraction of various boiling point cuts. The model parameters were estimated using the Nelder-Mead optimization procedure and were correlated with temperature. Comparison of experimental and... 

    Providing Optimization Tools to Design Aeroelastic Blades of Wind Turbines Made of Curved Fibers

    , M.Sc. Thesis Sharif University of Technology Feiz Arefi, Morteza (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    Nowadays Aeroelasticity is one of most important branch of aerospace science. The Aeroelastic analysis and get on aeroelastic safety margin, is one of the major steps that must be taken in flying crafts design. Diverse software have been developed for this purpose. Due to the increasing the demands of use of composite materials in aircraft structures, need to examine the effect of various parameters such as angles and stacking sequence on the aeroelastic instability (flutter and divergence) composite aircraft structures is determined. The analysis of wind turbines as a means of extracting energy from the wind and having a large diameter blades, causing the interference effects of aerodynamic... 

    Method of Implementation of MSG-3 for Boeing 747

    , M.Sc. Thesis Sharif University of Technology Arefi, Saideh (Author) ; Eshraghniaye Jahromi, Abdolhamid (Supervisor)
    Abstract
    Many airlines operate different fleets under different service conditions. These aircraft fleets need to be maintained in service. Safety, reliability and economic reasons motivate manufacturers, airlines and airworthiness authorities to investigate about different approaches to aircraft maintenance. At first, corrective maintenance which was developed for other industries was used by the aircraft industry but due to increasing complexity of aircrafts and their systems the industry started using time based maintenance. After years of operation and fleet experience, this industry started developing a program of its own i.e., MSG-1, MSG-2 and MSG-3. These maintenance programs have been evolved... 

    Transmission-Line Models for Approximate Analysis of Electromagnetic Periodic Structures

    , Ph.D. Dissertation Sharif University of Technology Khavasi, Amin (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Full numerical methods are usually used for the analysis of periodic structures such as photonic crystals and diffraction gratings. The main drawback of these methods is that they are time-consuming and thus are not appropriate for the design process. In this thesis, approximate and fast methods, based on transmission line models, for the analysis of periodic structures are proposed. To this end, in the first part of the thesis, we investigate one-dimensionally periodic metallic gratings. Longitudinally homogenous metallic gratings, enhanced reflection phenomenon and longitudinally inhomogenous metallic gratings are examined, and simple, and efficient transmission line models for these cases... 

    Microwave Inspired Easy-to-Design Nano-Couplers for Hybrid Photonic-Plasmonic Waveguide Structures

    , M.Sc. Thesis Sharif University of Technology Hodaei, Hossein (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Potential of plasmonic waveguide structures to confine light in sub-wavelength scales attracted many attentions in recent years. Among these structures planar metal-insulator-metal waveguide and plasmonic slot waveguide are more promising. That is because of their easy fabrication process along with their various reported applications. However, there are some obstacles in the path of developing plasmonic integrated circuits, among whichhigh propagation loss can be named as the most important. To solve this issue, photonic waveguides can be used as the lossless interconnections between small footprint plasmonic components on optical chips. Therefore, application of plasmonic slot waveguide... 

    Multi-Conductor Transmission Line Models for Analysis of Metal-Dielectric -Metal Nanoplasmonic Structures

    , M.Sc. Thesis Sharif University of Technology Bahadori, Meisam (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    The existing transmission line models of plasmonic nanostructures are modified in this thesis to study the electromagnetic characteristics of nano-plasmonic structures in a more efficeint yet accurate enough fashion. First, rectangular plasmonic cavities made by carving dielectric rectangles within a metallic region are modeled by trasnmission lines of finite length being appropriately terminated at their both ends. The resonance conditon in the proposed model yeilds the resonance frequencies, quality factors, and mode profiles of its correspondig plasmonic resonator. The accuracy of the proposed model is assessed by using the fully numerical finite-difference time-domain method (FDTD)... 

    Rigorous Calculation of Guided Modes in Photonic Crystal Waveguides and Contriving Homogenized Models

    , M.Sc. Thesis Sharif University of Technology Habibi, Nasim (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    In this thesis an approximate method is proposed for analysis of two dimensional photonic crystal waveguides. In this method an equivalent impedance is assigned to photonic crystal regions and the waveguide region is modeled with a transmission line. Waveguide’s loss is also analysed and computed by this method. In other words the proposed method is able to determine the complex propagation constant of guided modes without computing any complex roots for dispersion equation. Although like any other approximate method, the accuracy of this method is dependent to some special conditions but it’s advantage over other numerical methods is its simplicity and its capability for waveguide designs.... 

    Distributed Circuit Modeling of Plasmonic Nanostructures

    , M.Sc. Thesis Sharif University of Technology Rezaei, Mohsen (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    The existing transmission line models of plasmonic nanostructures are modified in this thesis to study the electromagnetic characteristics of nano-plasmonic structures in a more efficeint yet accurate enough fashion. First, rectangular plasmonic cavities made by carving dielectric rectangles within a metallic region are modeled by trasnmission lines of finite length being appropriately terminated at their both ends. The resonance conditon in the proposed model yeilds the resonance frequencies, quality factors, and mode profiles of its correspondig plasmonic resonator. The accuracy of the proposed model is assessed by using the fully numerical finite-difference time-domain method (FDTD)... 

    Analysis and Design of the Dielectric Resonators Using Differential Transfer Matrix Method (DTMM) in the Cylindrical Coordinate

    , M.Sc. Thesis Sharif University of Technology Jalaly, Sadegh (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Ring and disk resonator are studied in this thesis. First, the complex resonance frequencies of two-dimensional homogeneous ring and disk resonators are extracted by following the standard approach and then a novel method is proposed to extract the complex eigen-frequencies of two-dimensional inhomogeneous ring and disk resonators. The inhomogeneity of the refractive index is arbitrary along the radial direction. The proposed method is shown to be more efficient than the standard approach based on the stair-case approximation. It is therefore appropriate for resonator design and is thus employed for systematic study of the opposing trends of geometrical parameters in maximization of... 

    Optical Circuits Made of Spoof Plasmonic Structures with Wide-Band Transmission Resonance and the Impact of Fano Resonance

    , M.Sc. Thesis Sharif University of Technology Rahmani, Babak (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Due to the growing need for plasmonic wavs in microwave and terahertz spectra, a periodic arrangement of one-dimensional cut-through slits is investigated and an equivalent model based on the effective medium theory is derived. In contrast to the all previous attempts that were successful in mimicking only the zeroth-order diffracted waves, the proposed effective medium is capable of mimicking all diffraction orders. The parameters of the equivalent model are established by comparing the scattered waves of the semi-homogeneous medium and those of the main structure obtained by invoking the rigorous mode matching approach based on the single mode approximation inside the slits. This medium is... 

    Analysis of PlasMOStor in CMOS Compatible Plasmonic Circuits

    , M.Sc. Thesis Sharif University of Technology Salehian, Borna (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Thus far numerous components and devices have been designed and realized based on plasmonics. Hereon, we focus on PlasMOStor which is probably the first and most important CMOS compatible plasmonic modulator. It resembles to its electronic counterpart MOS transistor in geometry, unless, it has a plasmonic waveguide instead of the regular channel to modulate optical signals . By applying voltage to the gate and inset of charge carrier accumulation, optical properties of the channel changes and plasMOStor turns off. In this thesis, we carry out a through investigation of plasMOStor’s operation. We show that the proposed theoretical description of plasMOStor is fallacious. Subsequently,... 

    Propagation of Space-Wavepackets in one Dimensional Nonlinear and Nonhomogeneus Structures

    , M.Sc. Thesis Sharif University of Technology Alishahi, Fatemeh (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Semi-analytical solutions for the nonlinear, one dimensional wave equation have been investigated. The aim of this procedure is to deliver fast and yet accurate approaches for solving the abovementioned equasions. These solutions make a good alternative for full-numerical methods, which are usually time consuming and combersome. Therefore the proposed methods may find complete priority, considering design goals. Lack of a fast numerical method for solving the nonlinear, steady state cases, make the proposed approaches relevant, dealing theses problems. By employing the presented methods, It is possible to effieciently simulate the behavior of the space-wave packet, incident on the nonlinear... 

    Simulation of Pulse Propagation in Fiber Based on Space-Time Factorization

    , M.Sc. Thesis Sharif University of Technology Farhoudi, Ramtin (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    In this thesis, equations governing the pulse propagation in fiber optics are investigated and methods for numerical solution of these equations are modified or extended to more general cases. First, the extraction of these equations from Maxwell's equations is explained and then the numerical methods are discussed. For extracting the equations, we assume the fiber medium as a longitudinally inhomogeneous medium, so the coupling between the forward and backward waves is taken into account. In addition, the effect of birefringence in fiber is included in the analysis and its modeling as a stochastic process is explained in detail. Two numerical methods based on operator splitting technique... 

    Interaction of Nonlinear pulses for Nondestructive Characterization of the Highly Nonlinear Fiber

    , Ph.D. Dissertation Sharif University of Technology Alishahi, Fatemeh (Author) ; Mehrani, Khashayar (Supervisor)
    Abstract
    In this thesis, while a comprehensive study of different methods for the characterization of the optical fibers is done, a unique and effective method is being introduced for the characterization of the dispersion coefficient of Highly Nonlinear Fibers (HNLFs). The proposed method is based on the Brillouin Optical Time Domain Analysis (BOTDA) of a wave generated by the Four Wave Mixing (FWM) interaction. The current method, which includes an experimental scheme and an algorithm for solving the inverse problem, offers high sensitivity and experimental accuracy at the longitudinal resolution of 1 meter. The noise level has been considerably reduced by understanding different sources of the... 

    Implementation and Analysis of Optical Isolation using Reciprocal and Nonreciprocal Elements

    , M.Sc. Thesis Sharif University of Technology Pooya Fard, Ali (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    In this thesis we study the possibility of unidirectional transmission of light using reciprocal and nonreciprocal elements. Unidirectional transmission will allow us to separate the coupling of light into and out of resonators and design unidirectional waveguides. We start by studying the effects of one-sided modulations of dielectric constant of reciprocal structures. One-sided modulation will satisfy the phase matching condition for the coupling of two waves only in one direction. Using coupled mode theory, we study one sided modulation in layered media. Next, we find the exact solution to such strucures using transfer matrix method and analyze one-sided modulation in waveguide... 

    Homogenization of Sub-Wavelength Inhomogeneities for Analysis and Design of Terahertz Spoof Plasmonic Structures

    , Ph.D. Dissertation Sharif University of Technology Edalatipour, Masoud (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    In this thesis we investigate the use of periodic array of metallic structures which mimics the propagation of the surface plasmon-polaritons waves. The TEM modes supported by these structured surfaces are referred to as the spoof surface plasmon-polaritons. They have many properties in common with the electron plasma and can be described by a plasma-like effective permittivity, when the structure is on a scale much smaller than the wavelength. In this thesis we extend this concept to include different kinds of structured surfaces like cut through metallic slits array and square array of rectangular metallic pillars which support TEM modes. We show that although these structured surfaces... 

    Finding the Proper Input Masking for Improving the Performance of Optical Reservoir Computers

    , M.Sc. Thesis Sharif University of Technology Hemmatyar, Omid (Author) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses a semiconductor optical amplifier as nonlinearity, and a Fabry-Perot Resonator as a key element to establish the virtual nodes, connecting them and consequently, build the virtual neural... 

    Substitutional doping of Cu in diamond: Mott physics with p orbitals

    , Article European Physical Journal B ; Volume 77, Issue 3 , October , 2010 , Pages 331-336 ; 14346028 (ISSN) Arefi, H. H ; Jafari, S. A ; Abolhassani, M. R ; Sharif University of Technology
    2010
    Abstract
    Discovery of superconductivity in the impurity band formed by heavy doping of boron into diamond (C:B) as well as doping of boron into silicon (Si:B) has provided a rout for the possibility of new families of superconducting materials. Motivated by the special role played by copper atoms in high temperature superconducting materials where essentially Cu d orbitals are responsible for a variety of correlation induced phases, in this paper we investigate the effect of substitutional doping of Cu into diamond. Our extensive first principle calculations based on density functional theory which are averaged over various geometries indicate the formation of a mid-gap band, which mainly arises from... 

    A mild and chemoselective dithioacetalization of aldehydes in the presence of anhydrous copper (II) sulfate

    , Article Phosphorus, Sulfur and Silicon and the Related Elements ; Volume 181, Issue 6 , 2006 , Pages 1445-1450 ; 10426507 (ISSN) Matloubi Moghaddam, F ; Rezanejade Bardajee , G ; Arefi Oskui , A ; Sharif University of Technology
    2006
    Abstract
    Various aldehydes have been protected with different thiols as dithioacetals with excellent yields using anhydrous copper sulfate as a mild and chemoselective catalyst. The reaction is carried out in a solvent and/or under solvent-free conditions. The transthioacetalization of oxyacetals into dithioacetals was also achieved in an excellent yield. Copyright © Taylor & Francis Group, LLC