Loading...
Search for: ashjari--m--a
0.175 seconds

    Vorticity as a measure of heterogeneity for improving coarse grid generation

    , Article Petroleum Geoscience ; Volume 15, Issue 1 , 2009 , Pages 91-102 ; 13540793 (ISSN) Mahani, H ; Muggeridge, A. H ; Ashjari, M. A ; Sharif University of Technology
    2009
    Abstract
    This paper presents a novel coarse grid generation technique based on using vorticity as a measure of the impact of heterogeneity on flow. Vorticity is a maximum when the total flow is high and perpendicular to a large permeability gradient. Maps of vorticity were generated from single-phase flow simulations and used to generate coarse simulation grids from finely gridded geological models. The resulting grid was more refined in areas of high vorticity and coarser in areas of low vorticity. The method is first demonstrated on a simple five-layered model before being applied to three, 2D models of geologically realistic heterogeneity. The homogenized model generated from vorticity maps shows... 

    Hydrodynamics of secondary settling tanks and increasing their performance using baffles

    , Article Journal of Environmental Engineering ; Volume 136, Issue 1 , 2010 , Pages 32-39 ; 07339372 (ISSN) Tamayol, A ; Firoozabadi, B ; Ashjari, M. A ; Sharif University of Technology
    2010
    Abstract
    Generally, the flow in settling tanks is stratified, but the effect of buoyancy force on the flow field depends on the inlet concentration of particles and flow bulk velocity. A common approach for increasing settling tanks performance is to use baffles which can reduce effects of the unfavorable phenomena such as short circuiting between inlet and outlet and density currents in primary and secondary settling tanks, respectively. The suitable position of the baffles is related to the importance of buoyancy force. As a result, effects of inlet Reynolds and Froude numbers on the strength of buoyancy force are studied for a secondary settling tank and the results show that neither Reynolds nor... 

    Analytical dual mesh method for two-phase flow through highly heterogeneous porous media

    , Article Journal of Hydrology ; Volume 400, Issue 1-2 , 2011 , Pages 195-205 ; 00221694 (ISSN) Khoozan, D ; Firoozabadi, B ; Rashtchian, D ; Ashjari, M. A ; Sharif University of Technology
    2011
    Abstract
    Detailed geological models of a reservoir may contain many more cells that can be handled by reservoir simulators due to computer hardware limitations. Upscaling is introduced as an effective way to overcome this problem. However, recovery predictions performed on a coarser upscaled mesh are inevitably less accurate than those performed on the initial fine mesh. Dual mesh method is an approach that uses both coarse and fine grid information during simulation. In the reconstruction step of this method, the equations should be solved numerically within each coarse block, which is a time consuming process. Recently, a new coarse-grid generation technique based on the vorticity preservation... 

    Improved upscaling of reservoir flow using combination of dual mesh method and vorticity-based gridding

    , Article Computational Geosciences ; Volume 13, Issue 1 , 2009 , Pages 57-78 ; 14200597 (ISSN) Firoozabadi, B ; Mahani, H ; Ashjari, M. A ; Audigane, P ; Sharif University of Technology
    2009
    Abstract
    A novel technique for upscaling of detailed geological reservoir descriptions is presented. The technique aims at reducing both numerical dispersion and homogenization error generated due to incorporating a coarse computational grid and assigning effective permeability to coarse-grid blocks, respectively. In particular, we consider implicit-pressure explicit-saturation scheme where homogenization error impacts the accuracy of the coarse-grid solution of the pressure equation. To reduce the homogenization error, we employ the new vorticity-based gridding that generates a non-uniform coarse grid with high resolution at high vorticity zones. In addition, to control numerical dispersion, we use... 

    Two-phase flow separation in axial free vortex flow

    , Article Journal of Computational Multiphase Flows ; Volume 9, Issue 3 , 2017 , Pages 105-113 ; 1757482X (ISSN) Aghaee, M ; Ganjiazad, R ; Roshandel, R ; Ashjari, M. A ; Sharif University of Technology
    2017
    Abstract
    Multi-phase flows, particularly two-phase flows, are widely used in the industries, hence in order to predict flow regime, pressure drop, heat transfer, and phase change, two-phase flows should be studied more precisely. In the petroleum industry, separation of phases such as water from petroleum is done using rotational flow and vortices; thus, the evolution of the vortex in two-phase flow should be considered. One method of separation requires the flow to enter a long tube in a free vortex. Investigating this requires sufficient knowledge of free vortex flow in a tube. The present study examined the evolution of tube-constrained two-phase free vortex using computational fluid dynamics. The... 

    High performance dual mesh method to simulated two-phase gravity dominated flows in porous media

    , Article 11th European Conference on the Mathematics of Oil Recovery, ECMOR 2008, Bergen, 8 September 2008 through 11 September 2008 ; 2008 Ashjari, M. A ; Firoozabadi, B ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2008
    Abstract
    This paper presents a new combined method for accurate upscaling of two-phase displacements in highly heterogeneous reservoirs. The method has the capability to retain its high performance for various flow regimes, from viscous to gravity dominant displacements, without the need for further modifications and computational steps. Two different grids are incorporated for simulation. The grid on fine scale is used to recognize the complicated physics of flow which depends on dominated driving forces and their interaction with heterogeneity. However, to achieve a fast simulation, the global flow calculation is performed on the coarse scale grid using upscaled equivalent properties. The... 

    Using vorticity as an indicator for the generation of optimal coarse grid distribution

    , Article Transport in Porous Media ; Volume 75, Issue 2 , 2008 , Pages 167-201 ; 01693913 (ISSN) Ashjari, M. A ; Firoozabadi, B ; Mahani, H ; Sharif University of Technology
    2008
    Abstract
    An improved vorticity-based gridding technique is presented and applied to create optimal non-uniform Cartesian coarse grid for numerical simulation of two-phase flow. The optimal coarse grid distribution (OCGD) is obtained in a manner to capture variations in both permeability and fluid velocity of the fine grid using a single physical quantity called "vorticity". Only single-phase flow simulation on the fine grid is required to extract the vorticity. Based on the fine-scale vorticity information, several coarse grid models are generated for a given fine grid model. Then the vorticity map preservation error is used to predict how well each coarse grid model reproduces the fine-scale... 

    Vorticity-based coarse grid generation for upscaling two-phase displacements in porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 59, Issue 3-4 , 2007 , Pages 271-288 ; 09204105 (ISSN) Ashjari, M. A ; Firoozabadi, B ; Mahani, H ; Khoozan, D ; Sharif University of Technology
    2007
    Abstract
    Coarse grid generation from finely gridded geological model is a main step in reservoir simulation. Coarse grid generation algorithms aim at optimizing size, number and location of the grid blocks by identifying the important geological and flow features which control flow in porous media. By optimizing coarse grid structure we can improve accuracy of the coarse scale simulation results to reproduce fine grid behavior. A number of techniques have been proposed in the literature. We present a novel coarse grid generation procedure based on vorticity preservation between fine and coarse grids. In the procedure, the coarse grid mesh tries to capture variations in both permeability and fluid... 

    Reservoir Flow Simulation Using Multi-Scale Uscaling Method

    , Ph.D. Dissertation Sharif University of Technology Ashjari, Mohammad Ali (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    This thesis introduces a fast and accurate two-phase reservoir flow simulation procedure. The speed up is achieved by an upscaling technique where coarsening is applied to the detailed geological reservoir descriptions. This process results to two major error sources affecting the simulation accuracy significantly. The homogenization error is appeared when coarse scale data, such as equivalent permeability, is calculated from the available fine grid model information. It is shown that the error can be reduced adjusting coarse grid (non-uniform Cartesian) distribution. For the first time in this study, the grid distribution optimization is done based on “vorticity” map. In particular, the... 

    3D Numerical Simulation of Two-Phase Immiscible Flow in Axial Vortex Technology and Economic Analysis for Industrial Produced Water Pretreatment Facility in Desalting Plants

    , M.Sc. Thesis Sharif University of Technology Aghaee, Mohammad (Author) ; Roshandel, Ramin (Supervisor) ; Ashjari, Mohammad Ali (Supervisor)
    Abstract
    The phenomenon of vortex flow, is one of the most predominant streams in the nature. This phenomenon yielded by the motion of vortices, produces up to 1000 times acceleration of the Earth’s gravity. The issues of uncontrolled harvesting of oil wells and increase the life of the wells, which cause to increase in the extracted crude salt, reveal the importance of waste management and both handling and refining petroleum. According to global statistics, for every extracted barrel of oil, three barrels of water are yielded. Therefore, 250 million produced water barrels per day is produced.The separator technology with vortex core (brand Voraxial) is one of the latest technologies in waste-water... 

    Design and Development of an Alternative System of Recycling Exhaust Gas of a Direct Iron Reduction Furnace based on the Criterion of Minimum Destruction of Exergy and Water Usage

    , M.Sc. Thesis Sharif University of Technology Golkar, Babak (Author) ; Sobouhi, Yadollah (Supervisor) ; Ashjari, Mohammad Ali (Co-Advisor)
    Abstract
    Enormous amounts of water and energy are lost by scrubber utilization for furnace exhaust gas washing during direct iron reduction process. Hence, the aim of the current research is design and construction of a system which could be employed instead of scrubber within direct iron reduction process considering the equipment size constraints.To this end, the substitute system was manufactured after dimensional analysis and simulation of lab model compared to the prototype regarding the implementation limitations. The model has been tested in different operating conditions and empirical relations have been extracted for general analysis of direct iron reduction process. The case study here is... 

    Large Eddy Simulation and Design of the Three phase Immiscible Oil/Water/Solid Particles flow Separation System based on Vortices Generation

    , M.Sc. Thesis Sharif University of Technology Akrami, Ehsan (Author) ; Roshandel, Ramin (Supervisor) ; Ashjari, Mohammad Ali (Supervisor)
    Abstract
    In the process of extraction and refining of crude oil, a considerable amount of waste water are produced and if they are not removed, they would become one of the most hazardous environmental factors. Furthermore, purification and separation of such wastewaters are extremely costly, which with an increase in separation efficiency can lead to a decrease in valuable product loss. On the other hand, in the extraction process from oil reservoirs, because of porous and permeable nature of them, solid particles may be added to the extracted crude oil, which can result in an obstruction in pipelines and transport equipment.The most conventional method for separating a mixture of water, oil, and... 

    Numerical Study of the Effect of Permeability in Single-Phase Flow in Porous Media

    , M.Sc. Thesis Sharif University of Technology Heidari Farsani, Mohammad (Author) ; Sadrhosseini, Hani (Supervisor) ; Ashjari, Mohammad Ali (Supervisor)
    Abstract
    Present study is to simulate laminar flow in a channel exposed to heat flux from the walls and filled with porous media by software ANSYS CFX in finite volume method. The analysis is based on the Naviere-Stokes equations in the flow field which are modified to Brinkman-Forchheimer equations to be applicable for porous media. Effect of Reynolds number and permeability on seepage velocity, temperature distribution, heat transfer and pressure drop are investigated.Simulations are performed for two cases: fully developed flow at the entrance of the porous media and developing flow, which are corresponding to the Reynolds numbers of Re=77.6 and Re=1553 respectively (U= 0.01 m/s and U= 0.2 m/s).... 

    Theoretical study of high repetition rate short pulse generation with fiber optical parametric amplification [electronic resource]

    , Article Journal of Lightwave Technology ; May 2012, Volume 30, Issue 9, PP. 1263-1268 Vedadi, A ; Ariaei, A. M ; Jadidi, M. M ; Salehi, J. A ; Sharif Unversity of Technology
    Abstract
    In this paper, we study theoretically the generation of high repetition rate short pulses using fiber optical parametric amplification. We show that the pulse shape and duration depend on the signal location relatively to the pump frequency. We demonstrate that in order to get the shortest pulse width, the signal must be located at one of the extremities of the gain spectrum associated with the pump peak power. We derive the analytical expression of the pulse shape in this case and compare it to the exponential gain regime case. Using numerical simulations, we also analyze the impact of walk-off and pump phase modulation that is required to suppress Stimulated Brillouin Scattering and derive... 

    A novel omega shaped microwave absorber with wideband negative refractive index for C-band applications

    , Article Optik ; Volume 242 , 2021 ; 00304026 (ISSN) Bilal, R. M. H ; Baqir, M. A ; Iftikhar, A ; Ali, M. M ; Rahim, A. A ; Niaz Akhtar, M ; Mughal, M. J ; Naqvi, S. A ; Sharif University of Technology
    Elsevier GmbH  2021
    Abstract
    This paper reports a polarization controllable and angle-insensitive perfect metamaterial absorber (PMA). The proposed PMA consists of periodically arranged asymmetric omega-shaped resonators made of metallic copper. The absorptivity was analyzed considering the microwave C-band from 4 GHz to 8 GHz. The proposed PMA shows an absorption peak with almost 100% absorptivity at 6.2 GHz. Also, wideband negative index of refraction is observed. Further, the absorber is inspected for the different rotation angles of the top metasurface (omega-shaped ring) along the optical axis, and obliquity of incidence angle for both TE and TM polarized waves. Moreover, surface electric field and surface current... 

    Formal process algebraic modeling, verification, and analysis of an abstract Fuzzy Inference Cloud Service

    , Article Journal of Supercomputing ; Vol. 67, issue. 2 , February , 2014 , pp. 345-383 ; Online ISSN: 1573-0484 Rezaee, A ; Rahmani, A. M ; Movaghar, A ; Teshnehlab, M
    2014
    Abstract
    In cloud computing, services play key roles. Services are well defined and autonomous components. Nowadays, the demand of using Fuzzy inference as a service is increasing in the domain of complex and critical systems. In such systems, along with the development of the software, the cost of detecting and fixing software defects increases. Therefore, using formal methods, which provide clear, concise, and mathematical interpretation of the system, is crucial for the design of these Fuzzy systems. To obtain this goal, we introduce the Fuzzy Inference Cloud Service (FICS) and propose a novel discipline for formal modeling of the FICS. The FICS provides the service of Fuzzy inference to the... 

    Impact of holmium on structural, dielectric and magnetic properties of Cu–Zn spinel ferrites synthesized via sol–gel route

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 2 , 2021 , Pages 2205-2218 ; 09574522 (ISSN) Akhter, M. J ; Khan, M. A ; Hussain, A ; Akhtar, M. N ; Ahmad, M ; Javid, M. A ; Sharif University of Technology
    Springer  2021
    Abstract
    The mixed nano-ferrites materials Cu0.6Zn0.4HoxFe2−xO4 (0.00 ≤ x ≤ 0.12) were prepared via the sol–gel auto combustion technique. The TGA curve established the annealing temperature (500 °C) for phase formation. The single exothermic peak on the DSC plot occurred at 341 °C temperature. XRD patterns of these nano ferrites verified single phase formation of the FCC cubic structure. The lattice constant a was increased from 8.4244 to 8.4419 Å and then its value decreased to 8.4319 Å. Crystallite size was found in the range of 7 to 16 nm. The surface morphology of the samples was observed from the scanning electron microscope (SEM) images. The grain size was found within the range of 90 nm to... 

    Impact of holmium on structural, dielectric and magnetic properties of Cu–Zn spinel ferrites synthesized via sol–gel route

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 2 , 2021 , Pages 2205-2218 ; 09574522 (ISSN) Akhter, M. J ; Khan, M. A ; Hussain, A ; Akhtar, M. N ; Ahmad, M ; Javid, M. A ; Sharif University of Technology
    Springer  2021
    Abstract
    The mixed nano-ferrites materials Cu0.6Zn0.4HoxFe2−xO4 (0.00 ≤ x ≤ 0.12) were prepared via the sol–gel auto combustion technique. The TGA curve established the annealing temperature (500 °C) for phase formation. The single exothermic peak on the DSC plot occurred at 341 °C temperature. XRD patterns of these nano ferrites verified single phase formation of the FCC cubic structure. The lattice constant a was increased from 8.4244 to 8.4419 Å and then its value decreased to 8.4319 Å. Crystallite size was found in the range of 7 to 16 nm. The surface morphology of the samples was observed from the scanning electron microscope (SEM) images. The grain size was found within the range of 90 nm to... 

    An experimental study on mechanical behavior of a calcite cemented gravelly sand

    , Article Geotechnical Testing Journal ; Volume 41, Issue 3 , May , 2018 , Pages 494-507 ; 01496115 (ISSN) Shakeri, M. R ; Haeri, S. M ; Shahrabi, M. M ; Khosravi, A ; Sajadi, A. A ; Sharif University of Technology
    ASTM International  2018
    Abstract
    In the study presented herein, a simple method for laboratory calcite cementation of a reconstituted gravelly sand was presented. This method was used to prepare cemented gravelly sand specimens, which have similar natural characteristics to alluvial deposit of the city of Tehran. The formation and distribution of calcite bonds, as well as the effectiveness of the presented calcite cementation method in increasing interparticle cohesion, as observed in weakly to moderately cemented soil in Tehran, were evaluated by means of chemical analysis, X-ray diffraction technique, and unconfined compressive strength tests. The cementation technique was used to prepare triaxial specimens with calcite... 

    A new dynamic optimal m2m rf interface setting in relay selection algorithm (dorsa) for iot applications

    , Article IEEE Access ; Volume 10 , 2022 , Pages 5327-5342 ; 21693536 (ISSN) Ghasri, M. A. G ; Hemmatyar, A. M. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Machine-to-Machine (M2M) communication is an important type of communication in the Internet-of-Things (IoT). How to send data in these high-density communications using relay selection can help improve the performance of this type of communication in various applications. In addition, the possibility of simultaneous use of different Radio Frequency (RF) interfaces helps to use the spectrum more efficiently. In this work, we try to further use machine communication RF equipment and improve the average data rate of networks in some applications such as the IoT, which have their own bandwidth requirements. Therefore, we provide an optimization algorithm for relay selection as well as the...