Loading...
Search for: askari-farsangi--m--a
1.663 seconds

    Energy harvesting via shallow cylindrical and spherical piezoelectric panels using higher order shear deformation theory

    , Article Composite Structures ; Volume 147 , 2016 , Pages 155-167 ; 02638223 (ISSN) Sayyaadi, H ; Rahnama, F ; Askari Farsangi, M. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this article an analytical solution is presented for power output from a piezoelectric shallow shell energy harvester using higher order shear deformation theory (HSDT). The energy harvester is made of an elastic substrate layer coupled with one or two surface bonded piezoelectric layers. Mechanical equations of motion with Gauss's equation are derived on the basis of HSDT and solved simultaneously for simply-supported mechanical boundary conditions. The electromechanical frequency response functions that relate the power output and circuit load resistance are identified from the exact solutions. Using Rayleigh damping the influence of structural damping is taken into account. Also... 

    Acoustic energy harvesting via magnetic shape memory alloys

    , Article Journal of Physics D: Applied Physics ; Volume 52, Issue 13 , 2019 ; 00223727 (ISSN) Askari Farsangi, M. A ; Zohoor, H ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    This study investigates acoustic energy harvesting via magnetic shape memory alloys (MSMA). The acoustic pressure impacts the neck of a Helmholtz resonator (HR) with a flexible face made of an elastic membrane. The design of the proposed energy harvester let radial force in the membrane be tunable. An MSMA is clamped to the membrane, and a proof mass is attached to the other end. The enhanced sound pressure vibrates the membrane and, therefore, excites the base of the MSMA specimen made of Ni-Mn-Ga to apply strain to it. Inserting strain onto the MSMA leads to variant reorientation and change of magnetization vectors, resulting in a change in flux passing through the pick-up coil. Therefore,... 

    A tunable helmholtz resonator for electromagnetic energy harvesting

    , Article Proceedings of the 6th RSI International Conference on Robotics and Mechatronics, IcRoM 2018, 23 October 2018 through 25 October 2018 ; 2019 , Pages 322-325 ; 9781728101279 (ISBN) Askari Farsangi, M. A ; Zohoor, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, acoustic energy harvesting using a tunable Helmholtz Resonator (HR) is investigated. The frequency of resonator can be changed by varying the radial force in a membrane which is used in one of its face. Applying acoustic pressure, vibrates the air inside HR neck and therefore changes pressure in HR chamber which results in membrane vibration. Attached magnet to the membrane will vibrate and its relative motion to a fixed coil generates voltage on the basis of Faraday's law of induction. Modeling approach is developed considering equivalent nonlinear membrane stiffness and coupling of electrical circuit and mechanical device. At the end, system behavior is studied numerically... 

    Multiphysics modeling of an MSMA-based clamped-clamped inertial energy harvester

    , Article Smart Materials and Structures ; Volume 28, Issue 3 , 2019 ; 09641726 (ISSN) Askari Farsangi, M. A ; Zakerzadeh, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In this paper, an alternative way of harvesting energy from ambient vibration is investigated through proposing a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). To this end, a clamped-clamped beam is coupled with MSMA units which are attached to its roots. A shock load is applied to a proof mass in the middle of the beam. The beam vibration causes longitudinal strain in the MSMAs and as a result the magnetic flux alters in the coils wounding around the MSMA units and produce an AC voltage. To have a reversible strain in MSMAs, a bias magnetic field is applied in transverse direction of the MSMA units. The large scale vibration of Euler-Bernoulli beam is modeled... 

    Modeling and parametric studies of magnetic shape memory alloy–based energy harvester

    , Article Journal of Intelligent Material Systems and Structures ; Volume 29, Issue 4 , 2018 , Pages 563-573 ; 1045389X (ISSN) Sayyaadi, H ; Rostami Najafabadi, H ; Askari Farsangi, M. A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This article presents a model to simulate the behavior of a magnetic shape memory alloy while harvesting vibratory energy. In this type of energy harvester, magnetic shape memory alloy element is placed in the air gap of a ferromagnetic core which conducts the magnetic flux. Two apparent coils are wound around a ferromagnetic core: one to produce bias magnetic field by passing a rectified electric current and the other to serve as an energy pickup coil. Applying compressive time-variant strain field to magnetic shape memory alloy element changes its dimensions and magnetic properties as well. Presence of the bias magnetic field returns magnetic shape memory alloy element to its initial state... 

    A novel inertial energy harvester using magnetic shape memory alloy

    , Article Smart Materials and Structures ; Volume 25, Issue 10 , 2016 ; 09641726 (ISSN) Askari Farsangi, M. A ; Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    This paper studies the output voltage from a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). The MSMA elements are attached to the root of a cantilever beam by means of two steps. In order to get electrical voltage, two coils are wound around the MSMAs and a shock load is applied to a tip mass at the end of the beam to have vibration in it. The beam vibration causes strain in the MSMAs along their longitudinal directions and as a result the magnetic flux alters in the coils. The change of magnetic flux in the surrounding coil produces an AC voltage. In order to predict the output voltage, the nonlinear governing equations of beam motion based on Euler-Bernoulli... 

    Energy harvesting from structural vibrations of magnetic shape memory alloys

    , Article Applied Physics Letters ; Volume 110, Issue 10 , 2017 ; 00036951 (ISSN) Askari Farsangi, M. A ; Cottone, F ; Sayyaadi, H ; Zakerzadeh, M. R ; Orfei, F ; Gammaitoni, L ; Sharif University of Technology
    American Institute of Physics Inc  2017
    Abstract
    This letter presents the idea of scavenging energy from vibrating structures through magnetic shape memory alloy (MSMA). To this end, a MSMA specimen made of Ni50Mn28Ga22 is coupled to a cantilever beam through a step. Two permanent magnets installed at the top and bottom of the beam create a bias field perpendicular to the magnetization axis of the specimen. When vibrating the device, a longitudinal axial load applies on the MSMA, which in turn changes the magnetization, due to the martensitic variant reorientation mechanism. A pick-up coil wounded around the MSMA converts this variation into voltage according to the Faraday's law. Experimental test confirms the possibility of generating... 

    An analytical solution for dynamic behavior of thick doubly curved functionally graded smart panels

    , Article Composite Structures ; Vol. 107, issue , January , 2014 , p. 88-102 Sayyaadi, H ; Askari Farsangi, M. A ; Sharif University of Technology
    2014
    Abstract
    In this paper, an analytical solution is presented for free vibration and dynamic behavior of doubly curved laminated shell consisting of a functionally graded core layer and surface attached functionally graded piezoelectric layers. Shell through-thickness kinematics is based on higher order shear deformation theory of shells, whereas a quadratic variation is assumed for electric potential. Using Hamilton's principle and Maxwell's equation, the governing equations of motion under mechanical loads are derived as seven highly coupled partial differential equations. Implementing Laplace transformation, doing few mathematical operations and using Laplace inverse method, time dependencies of... 

    Frequency-dependent energy harvesting via magnetic shape memory alloys

    , Article Smart Materials and Structures ; Volume 24, Issue 11 , October , 2015 ; 09641726 (ISSN) Sayyaadi, H ; Askari Farsangi, M. A ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    This paper is focused on presenting an accurate framework to describe frequency-dependent energy harvesting via magnetic shape memory alloys (MSMAs). Modeling strategy incorporates the phenomenological constitutive model developed formerly together with the magnetic diffusion equation. A hyperbolic hardening function is employed to define reorientation-induced strain hardening in the material, and the diffusion equation is used to add dynamic effects to the model. The MSMA prismatic specimen is surrounded by a pickup coil, and the induced voltage during martensite-variant reorientation is investigated with the help of Faraday's law of magnetic field induction. It has been shown that, in... 

    Modeling, Analysis and Experimental Investigation of Energy Harvesting via Magnetic Shape Memory Alloys

    , Ph.D. Dissertation Sharif University of Technology Askari Farsangi, Mohammad Amin (Author) ; Sayyadi, Hassan (Supervisor) ; Zakerzadeh, Mohammad Reza (Co-Advisor)
    Abstract
    Vibration based energy harvesting is the process of trapping and collecting vibrational energy from ambient sources which seem unusable at first sight. The smart materials with the capability of coupling two different fields can be used in converting vibrational energy to electrical one. One of this smart material which has been taken into account recently is the Magnetic Shape Memory Alloy (MSMA) and it can couple the magnetic and mechanical fields. In MSMAs the total magnetization vector changes with the application of stress and make it possible to harvest energy from Faraday law’s of induction. An important phenomena that exist in MSMA is the dependency of magnetization-strain behavior... 

    Cancer Detection and Classification in Histopathology Images Under Small Training Set

    , M.Sc. Thesis Sharif University of Technology Askari Farsangi, Amir Hossein (Author) ; Rohban, Mohammad Hossein (Supervisor) ; Sharifi Zarchi, Ali (Supervisor)
    Abstract
    Histopathology images are a type of medical images that are used to diagnose a variety of diseases. One of these illnesses is the Leukemia cancer, which has four different subtypes and is diagnosed using a blood smear image. As a result of the advancement of deep learning tools, models for diagnosing various types of disease from images have been developed in recent years.In this project, one of the best models developed to diagnose four different types of disease was replicated, and it was demonstrated that, while this model achieves acceptable accuracy, its decision is not based on medically significant criteria. In the following, a general method for diagnosing the disease is proposed... 

    Development of an experimental method based on Compton backscattering to measure the wax thickness in petroleum pipelines

    , Article Journal of Instrumentation ; Volume 16, Issue 10 , 2021 ; 17480221 (ISSN) Kochakpour, J ; Taheri, A ; Askari, M ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Wax deposition inside pipelines is a major concern in oil and gas industries, and it must be continuously monitored. In this paper, a mathematical-experimental combined method based on the Compton scattering was proposed to determine the thickness of the wax deposited inside the industrial pipes. For this purpose, first, the relationship between the intensity of the backscattered gamma-rays and the thickness of the wax inside the pipe was mathematically modeled. Then, an experimental setup was prepared for measuring the intensity of the backscattered gamma-rays from the pipes with different wall thicknesses and different wax widths. Finally, the experimentally measured counts were used by... 

    Improvement of pierce-smith converter performance and reduction of splashing using smoothed particle hydrodynamics method

    , Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 425-428 ; 19366612 (ISSN) Lileh Koohi, A. H ; Halali, M ; Askari, M ; Sharif University of Technology
    2013
    Abstract
    Splashing in the Peirce Smith copper converter was investigated using the Smoothed Particle Hydrodynamics (SPH) method. A model 50 cm in diameter (one eighth of the actual convertor) was made to verify results. The ffect of air flow rate and the distance of air blowers from the surface were identified as two major contributors to splashing and their effect on splashing was investigated. Using C++ based on SPH method, a model, geometrically identical to the physical model, was designed for simulation and verification of results. It was found that splashing may be reduced by as much as 85% by controlling the air flow rate into the convertor  

    Numerical simulation using a modified solver within OpenFOAM for compressible viscous flows

    , Article European Journal of Computational Mechanics ; Volume 28, Issue 6 , 2020 , Pages 541-572 Ghazanfari, V ; Salehi, A. A ; Keshtkar, A ; Shadman, M. M ; Askari, M. H ; Sharif University of Technology
    River Publishers  2020
    Abstract
    In this work, we attempted to develop an Implicit Coupled Density-Based (ICDB) solver using LU-SGS algorithm based on the AUSM+ up scheme in OpenFOAM. Then sonicFoam solver was modified to include viscous dissipation in order to improve its capability to capture shock wave and aerothermal variables. The details of the ICDB solver as well as key implementation details of the viscous dissipation to energy equation were introduced. Finally, two benchmark tests of hypersonic airflow over a flat plate and a 2-D cylinder were simulated to show the accuracy of ICDB solver. To verify and validate the ICDB solver, the obtained results were compared with other published experimental data. It was... 

    Rational energy balance method to nonlinear oscillators with cubic term

    , Article Asian-European Journal of Mathematics ; Volume 6, Issue 2 , 2013 ; 17935571 (ISSN) Daeichin, M ; Ahmadpoor, M. A ; Askari, H ; Yildirim, A ; Sharif University of Technology
    2013
    Abstract
    In this paper, a novel approach is proposed for solving the nonlinear problems based on the collocation and energy balance methods (EBMs). Rational approximation is employed as an initial guess and then it is combined with EBM and collocation method for solving nonlinear oscillators with cubic term. Obtained frequency amplitude relationship is compared with exact numerical solution and subsequently, a very excellent accuracy will be revealed. According to the numerical comparisons, this method provides high accuracy with 0.03% relative error for Duffing equation with strong nonlinearity in the second-order of approximation. Furthermore, achieved results are compared with other types of... 

    Observer-based adaptive fuzzy controller for uncertain non-strict state-delayed nonlinear systems subject to input and output constraints

    , Article Journal of the Franklin Institute ; Volume 357, Issue 12 , 2020 , Pages 7483-7514 Askari, M. R ; Shahrokhi, M ; Khajeh Talkhoncheh, M ; Moradvandi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper addresses the design of an observer-based adaptive fuzzy controller for a class of uncertain non-strict nonlinear systems subject to time-delays, unknown direction, input saturation, and output constraint. The Barrier Lyapunov Function (BLF) has been utilized to keep the system output inside the desired bounds. The state and input delays have been handled by using the Lyapunov–Krasovskii function and including an integral compensator term in the controller, respectively. A state observer has been designed to estimate the unmeasured states. The Lipschitz condition for proving boundedness of the estimated states has been relaxed. The Nussbaum gain function has been exploited to deal... 

    Modeling and simulation of flow and uranium isotopes separation in gas centrifuges using implicit coupled density-based solver in OpenFOAM

    , Article European Journal of Computational Mechanics ; Volume 29, Issue 1 , 2020 , Pages 1-26 Ghazanfari, V ; Salehi, A. A ; Keshtkar, A. R ; Shadman, M. M ; Askari, M. H ; Sharif University of Technology
    River Publishers  2020
    Abstract
    The performance of a gas centrifuge that is used for isotopes separation is dependent on the gas flow inside it. In this study, for modeling the UF6 gas flow, an Implicit Coupled Density-Based (ICDB) solver, was developed in OpenFOAM. To validate the ICDB solver, the gas flow within the rotor in total reflux state was compared with the analytical solution obtained by Onsager model and the numerical solution obtained by the Fluent software. The results showed that the ICDB solver had acceptable accuracy and validity. Also the computational efficiency of Roe, AUSM (Advection Upstream Splitting Method) and AUSM+ up schemes were compared. The results showed AUSM+ up scheme is efficient. Then,... 

    Fabrication of novel chitosan-g-PNVCL/ZIF-8 composite nanofibers for adsorption of Cr(VI), As(V) and phenol in a single and ternary systems

    , Article Carbohydrate Polymers ; Volume 224 , 2019 ; 01448617 (ISSN) Bahmani, E ; Koushkbaghi, S ; Darabi, M ; ZabihiSahebi, A ; Askari, A ; Irani, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The chitosan-grafted-poly(N-vinylcaprolactam) (chitosan-g-PNVCL) nanofibers were synthesized via electrospinning method. ZIF-8 metal-organic frameworks nanoparticles were incorporated into the nanofibers for adsorption of Cr(VI), As(V) and phenol from water. The BET, FTIR, XRD and SEM analysis were carrfried out to obtain the characteristics of nanofibers. The optimum parameters of ZIF-8 content, pH, contact time, adsorbent dosage, and initial concentration of adsorbates on the Cr(VI), As(V) and phenol removal were studied. The reusability of synthesized nanofibers for five sorption-desorption cycles was also examined. The maximum experimental adsorption capacity of the... 

    Non-linear assessment of tunable vibrating ring micro-gyroscopes design

    , Article Mechanics Based Design of Structures and Machines ; 2023 ; 15397734 (ISSN) Sayyaadi, H ; Mokhtari Amir Majdi, M. A ; Askari, A. R ; Sharif University of Technology
    Taylor and Francis Ltd  2023
    Abstract
    This paper introduces a tunable design for an electrically actuated vibrating ring micro-gyroscope. This mechanism contains eight piezoelectric micro-beams attached to the vibrating ring in each drive and sense directions. Employing a full geometric non-linear model for the vibrating ring and accounting for the micro-beam’s mid-plane stretching; the mathematical model associated with the present system is obtained. Afterward, utilizing the Hamilton principle together with the Ritz method, the reduced equations of motion are derived. The present results are validated by those available in the literature for simpler systems. A three-dimensional (3D) finite element (FE) simulation was carried... 

    Size influence of specimens and maximum aggregate on dam concrete: compressive strength

    , Article Journal of Materials in Civil Engineering ; Volume 21, Issue 8 , 2009 , Pages 349-355 ; 08991561 (ISSN) Khaloo, A. R ; Mohamadi Shooreh, M. R ; Askari, S. M ; Sharif University of Technology
    2009
    Abstract
    The compressive strength of mass concrete in dams is obtained from laboratory experiments of various cylindrical specimens with diameters of 150, 250, and 300 mm, and heights of 300, 500, and 450 mm, respectively. These specimens with 37.5, 75, and 150 mm maximum size of aggregate were investigated. The 7- and 90-day compressive strength of concrete was found to be between 20 and 58 MPa depending on the size of the specimens. The results reveal the existence of a significant size effect. Based on test results, relationships between the strength of mass concrete specimens and their size and shape are developed. Finally, results and a discussion are presented regarding compressive strength...