Loading...
Search for: azadi--h
0.105 seconds

    Crack growth modeling via 3D automatic adaptive mesh refinement based on modified-SPR technique

    , Article Applied Mathematical Modelling ; Volume 37, Issue 1-2 , 2013 , Pages 357-383 ; 0307904X (ISSN) Khoei, A. R ; Eghbalian, M ; Moslemi, H ; Azadi, H ; Sharif University of Technology
    2013
    Abstract
    In this paper, the three-dimensional automatic adaptive mesh refinement is presented in modeling the crack propagation based on the modified superconvergent patch recovery technique. The technique is developed for the mixed mode fracture analysis of different fracture specimens. The stress intensity factors are calculated at the crack tip region and the crack propagation is determined by applying a proper crack growth criterion. An automatic adaptive mesh refinement is employed on the basis of modified superconvergent patch recovery (MSPR) technique to simulate the crack growth by applying the asymptotic crack tip solution and using the collapsed quarter-point singular tetrahedral elements... 

    Numerical simulation of ductile crack growth under cyclic and dynamic loading with a damage-viscoplasticity model

    , Article Engineering Fracture Mechanics ; Volume 99 , 2013 , Pages 169-190 ; 00137944 (ISSN) Khoei, A. R ; Eghbalian, M ; Azadi, H ; Saffar, H ; Sharif University of Technology
    2013
    Abstract
    In this paper, the crack propagation in ductile materials is simulated under cyclic and dynamic loading. The adaptive finite element method is used to model the discontinuity due to crack propagation. The ductile fracture assumptions and continuum damage mechanics are utilized to model the material rupture behavior. Moreover both the rate-independent and rate-dependent constitutive equations are elaborated and the crack closure effect and combined hardening model are discussed in addition to some aspects of finite element implementation. Finally, a comparison is performed between the numerical simulation results and those of experiments to illustrate the robustness of proposed computational... 

    Optimization of air plasma sprayed thermal barrier coating parameters in diesel engine applications

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 11 , 2013 , Pages 3530-3538 ; 10599495 (ISSN) Azadi, M ; Farrahi, G. H ; Moridi, A ; Sharif University of Technology
    2013
    Abstract
    In the present paper, an optimization of thermal barrier coating parameters is performed for diesel engine applications. The substrate is A356.0-T7, a cast aluminum alloy which has a vast application in diesel engines, and the alloy is coated by plasma sprayed ZrO2-8 wt.% Y2O3. Parameters including the feed rate of coating powders, the nozzle distance to specimen surfaces, and the coating thickness are optimized by thermal shock fatigue tests and bending tests. Optimum values of the feed rate and the nozzle distance are 30 g/min and 80 mm, respectively, when the objective is considered as maximizing the bending strength. Thermal shock tests demonstrate that lower thickness of coating layers... 

    Optimal experiment design for plasma thermal spray parameters at bending loads

    , Article International Journal of Surface Science and Engineering ; Volume 6, Issue 1-2 , 2012 , Pages 3-14 ; 1749785X (ISSN) Azadi, M ; Moridi, A ; Farrahi, G. H ; Sharif University of Technology
    2012
    Abstract
    Ceramic thermal barrier coatings are applied on gas turbines and diesel engine components to protect metals from heat and this enhances the service lifetime by means of a reduction in working temperature. In the present paper, optimisation of plasma thermal spray parameters, including feed rate and nozzle distance from the specimen surface is performed by using the design of experiment method. Due to factorial approach, by considering two parameters with three variation levels, nine experiments of bending test are needed. The base material is cast aluminium alloy, A356.0-T7. The coating layers consist of a bond coat, Ni-Cr-Al-Y with a thickness of 150 μm and a top coat, ZrO2-8wt%Y2O3 with a... 

    Comparison between isothermal and non-isothermal fatigue behavior in a cast aluminum-silicon-magnesium alloy

    , Article Strength of Materials ; Volume 47, Issue 6 , November , 2015 , Pages 840-848 ; 00392316 (ISSN) Azadi, M ; Winter, G ; Farrahi, G. H ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    In the present study, the out-of-phase thermomechanical fatigue (OP-TMF) behavior of a cast aluminum-silicon-magnesium alloy, the A356.0 alloy which has been widely used in diesel engine cylinder heads, is compared to room-temperature and high-temperature low cycle fatigue (RT-, HT-LCF) behaviors. For this purpose, strain/temperature-controlled isothermal and non-isothermal fatigue tests were performed based on realistic loading conditions in cylinder heads. Fatigue tests results showed that the plastic strain increased during cycles under constant mechanical strain amplitude, while the specimen failed. Under LCF loadings, the cyclic hardening occurred at low temperatures for the A356.0... 

    Multidisciplinary optimization of a car component under NVH and weight constraints using RSM

    , Article 2009 ASME International Mechanical Engineering Congress and Exposition, IMECE2009, Lake Buena Vista, FL, 13 November 2009 through 19 November 2009 ; Volume 15 , 2010 , Pages 315-319 ; 9780791843888 (ISBN) Azadi, M ; Zahedi, F ; Azadi, S ; Moradi, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    One of the important challenges in the auto industry is to reduce the mass of the vehicle while meeting structural performance requirements for Crashworthiness, Noise, Vibration and Harshness (NVH) etc. In this paper, a multidisciplinary optimization (MDO) of a car back-bonnet is investigated by using trie Response Surface Method (RSM). Firstly, a car body is fully surface modeled in CATIA and meshed in HYPERMESH software. Then, modal analysis of the finite element model is performed by NASTRAN software to find natural frequencies. Frequency map of that component is extracted and compared with a reference map to detect defects. Design of Experiments (DOE) methodologies is used for a... 

    Removal of lignin, COD, and color from pulp and paper wastewater using electrocoagulation

    , Article Desalination and Water Treatment ; Volume 57, Issue 21 , 2016 , Pages 9698-9704 ; 19443994 (ISSN) Azadi Aghdam, M ; Kariminia, H. R ; Safari, S ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Electrocoagulation is an effective, fast, and economic method for treatment of industrial wastewaters. In this study, effects of different parameters including electrolysis time, voltage, and pH on the reduction of chemical oxygen demand (COD), lignin, and color in pulp and paper wastewaters were studied. Iron and aluminum were used as anode and cathode electrodes, respectively. Under the optimal conditions (pH 5, 60 min, 10 V), this treatment method led to 85% removal of COD and 78.5% removal of lignin. Furthermore, clear treated water with complete color removal was generated that suggests the application of electrocoagulation for industrial wastewater treatment, especially in pulp and... 

    Numerical simulation of ductile crack growth under cyclic and dynamic loading with a damage–viscoplasticity model

    , Article Engineering Fracture Mechanics ; Volume 99 , February , 2013 , PP. 169–190 Khoei, A. R. (Amir Reza) ; Eghbalian, M ; Azadi, H ; Saffar, H ; Sharif University of Technology
    2013
    Abstract
    In this paper, the crack propagation in ductile materials is simulated under cyclic and dynamic loading. The adaptive finite element method is used to model the discontinuity due to crack propagation. The ductile fracture assumptions and continuum damage mechanics are utilized to model the material rupture behavior. Moreover both the rate-independent and rate-dependent constitutive equations are elaborated and the crack closure effect and combined hardening model are discussed in addition to some aspects of finite element implementation. Finally, a comparison is performed between the numerical simulation results and those of experiments to illustrate the robustness of proposed computational... 

    Thermo-mechanical behaviours of light alloys in comparison to high temperature isothermal behaviours

    , Article Materials at High Temperatures ; Vol. 31, issue. 1 , 2014 , pp. 12-17 ; ISSN: 09603409 Azadi, M ; Farrahi, G. H ; Winter, G ; Eichlseder, W ; Sharif University of Technology
    2014
    Abstract
    In this article, out-of-phase thermo-mechanical fatigue (TMF) behaviours of light alloys were investigated in comparison to their high temperature low cycle fatigue (LCF) behaviours. For this objective, strain based fatigue tests were performed on the A356 aluminium alloy and on the AZ91 magnesium alloy. Besides, TMF tests were carried out, where both strain and temperature changed. The fatigue lifetime comparison demonstrated that the TMF lifetime was less than that one under LCF loadings at elevated temperatures for both light alloys. The reason was due to severe conditions in TMF tests in comparison to LCF tests. The temperature varied in TMF test but it was constant under LCF loadings.... 

    Fatigue lifetime of AZ91 magnesium alloy subjected to cyclic thermal and mechanical loadings

    , Article Materials and Design ; Vol. 53, issue , 2014 , pp. 639-644 ; ISSN: 02613069 Azadi, M ; Farrahi, G. H ; Winter, G ; Eichlseder, W ; Sharif University of Technology
    2014
    Abstract
    In the present paper, thermo-mechanical fatigue (TMF) and low cycle fatigue (LCF) or isothermal fatigue (IF) lifetimes of a cast magnesium alloy (the AZ91 alloy) were studied. In addition to a heat treatment process (T6), several rare elements were added to the alloy to improve the material strength in the first step. Then, the cyclic behavior of the AZ91 was investigated. For this objective, strain-controlled tension-compression fatigue tests were carried out. The temperature varied between 50 and 200. °C in the out-of-phase (OP) TMF tests. The constraint factor which was defined as the ratio of the mechanical strain to the thermal strain, was set to 75%, 100% and 125%. For LCF tests,... 

    Experimental fatigue lifetime of coated and uncoated aluminum alloy under isothermal and thermo-mechanical loadings

    , Article Ceramics International ; Volume 39, Issue 8 , December , 2013 , Pages 9099-9107 ; 02728842 (ISSN) Azadi, M ; Farrahi, G. H ; Winter, G ; Eichlseder, W ; Sharif University of Technology
    2013
    Abstract
    This paper presents the fatigue lifetime of an aluminum-silicon-magnesium alloy, widely used in diesel engine cylinder heads, both with and without a thermal barrier coating (TBC) system. The coating system in this study consists of two layers including a 150 μm thick metallic bond coat and a zirconium oxide top coat 350 μm thick. These coating layers were applied on the substrate of A356.0 alloy by air plasma thermal spraying. The isothermal fatigue tests were conducted in low cycle fatigue (LCF) regime at various temperatures. Out-of-phase thermo-mechanical fatigue (OP-TMF) tests were also performed at different maximum temperatures and constraint factors. Experimental results demonstrate... 

    On the size-dependent behavior of drop contact angle in wettability alteration of reservoir rocks to preferentially gas wetting using nanofluid

    , Article Journal of Petroleum Science and Engineering ; Volume 178 , 2019 , Pages 1143-1154 ; 09204105 (ISSN) Azadi Tabar, M ; Ghazanfari, M. H ; Dehghan Monfared, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Wettability alteration of rock surfaces toward gas wetting have been recognized as a practical approach for maximizing the production from the gas condensate reservoirs. Most of the reported work in this area applied the so called sessile drop contact angle measurement technique to examine the change in wetting state of a surface. However, the size-dependent wetting behavior of drop which could affect the exact determination of wettability and wettability changes was not well discussed in the previous studies. Therefore, in this work, the size dependency of contact angle for four different liquid-solid-gas systems; i.e., water-calcite-air, water-treated calcite-air (nanofluid treated... 

    Compare numerical modeling and improved understanding of dynamic sessile drop contact angle analysis in Liquid-Solid-Gas system

    , Article Journal of Petroleum Science and Engineering ; Volume 184 , 2020 Azadi Tabar, M ; Ghazanfari, M. H ; Dehghan Monfared, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Dynamic contact angle measurement; as a standard method for surface wettability analysis, is usually conducted through the analysis of sessile drops formed following the low rate injection of fluid from beneath through a drilled hole via an injection needle. However, understanding/characterizing the changes of drop contact angle from the point where the flat solid surface begins is not well discussed yet. Moreover, during the evaluation of size-dependent behavior of contact angle of millimeter-scale drops, the effect of the drilled hole is ignored. In this regard, in the current study, the experimental and thermodynamic characterizations of the sessile drop advancing contact angle... 

    Modification of the infinite-dimensional neutral-type time-Delay dynamic model for the coupled axial⇓torsional vibrations in drill strings with a drag bit

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 15, Issue 8 , 2020 Tashakori, S ; Vossoughi, G ; Zohoor, H ; Azadi Yazdi, E ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2020
    Abstract
    Drill strings are subjected to complex coupled dynamics. Therefore, accurate dynamic modeling, which can represent the physical behavior of real drill strings, is of great importance for system analysis and control. The most widely used dynamic models for such systems are the lumped element models, which neglect the system distributed feature. In this paper, a dynamic model called neutral-type time delay model is modified to investigate the coupled axial–torsional vibrations in drill strings. This model is derived directly from the distributed parameter model by employing the d’Alembert method. Coupling of axial and torsional vibration modes occurs in the bit–rock interface. For the first... 

    Free and forced vibration analysis of FG beam considering temperature dependency of material properties

    , Article Journal of Mechanical Science and Technology ; Volume 25, Issue 1 , 2011 , Pages 69-80 ; 1738494X (ISSN) Azadi, M ; Sharif University of Technology
    2011
    Abstract
    This paper presents a finite element method (FEM) free and forced lateral vibration analysis of beams made of functionally graded materials (FGMs). The temperature dependency of material properties along with damping had not previously been taken into account in vibration analysis. In the present study, the material properties were assumed to be temperature-dependent, and were graded in the thickness direction according to a simple power law distribution of the volume fractions of the constituents. The natural frequencies were obtained for functionally graded (FG) beams with various boundary conditions. First, an FG beam was assumed to be isotropic (metal rich) and the results were compared... 

    Effects of strain rate and mean strain on cyclic behavior of aluminum alloys under isothermal and thermo-mechanical fatigue loadings

    , Article International Journal of Fatigue ; Volume 47 , 2013 , Pages 148-153 ; 01421123 (ISSN) Azadi, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, effects of strain rate and mean strain on the cyclic behavior and the lifetime of aluminum-silicon alloys are investigated under thermo-mechanical and isothermal fatigue loadings. To achieve these goals, low cycle fatigue tests are accomplished at evaluated temperatures under various strain rates (by changing the loading frequency) and different strain ratios (minimum to maximum strain). Thermo-mechanical fatigue experiments are performed in an out-of-phase condition where the temperature varies between 50 and 250 °C. Various heating/cooling rates are taken into account to assess the strain rate effect and different starting temperatures are considered to study the mean strain... 

    Modeling of cohesive crack growth using an adaptive mesh refinement via the modified-SPR technique

    , Article International Journal of Fracture ; Volume 159, Issue 1 , 2009 , Pages 21-41 ; 03769429 (ISSN) Khoei, A. R ; Moslemi, H ; Majd Ardakany, K ; Barani, O. R ; Azadi, H ; Sharif University of Technology
    2009
    Abstract
    In this paper, an adaptive finite element procedure is presented in modeling of mixed-mode cohesive crack propagation via the modified superconvergent path recovery technique. The adaptive mesh refinement is performed based on the Zienkiewicz-Zhu error estimator. The weighted-SPR recovery technique is employed to improve the accuracy of error estimation. The Espinosa-Zavattieri bilinear cohesive zone model is applied to implement the traction-separation law. It is worth mentioning that no previous information is necessary for the path of crack growth and no region of the domain is necessary to be filled by the cohesive elements. The maximum principal stress criterion is employed for... 

    Effects of preheating temperature and cooling rate on two-step residual stress in thermal barrier coatings considering real roughness and porosity effect

    , Article Ceramics International ; Vol. 40, Issue. 10 , December , 2014 , pp. 15925-15940 ; ISSN: 02728842 Rezvani Rad, M ; Farrahi, G. H ; Azadi, M ; Ghodrati, M ; Sharif University of Technology
    2014
    Abstract
    In this research, a finite element model was developed in order to simulate the two-step residual stress distribution of a thermal barrier coating system, considered to be used in diesel engine cylinder head, with a real roughness and real porosity. Two steps including the bond coat and the top coat deposition processes were taken into account. The real geometry of coating layers, including the roughness and the porosity, was also considered based on a scanning electron microscopy image. Then, effects of the convective heat transfer coefficient and initial substrate and substrate/bond coat preheating temperatures on the residual stress were studied. Obtained results illustrate that the... 

    Stress analysis of thermal barrier coating system subjected to out-of-phase thermo-mechanical loadings considering roughness and porosity effect

    , Article Surface and Coatings Technology ; Volume 262 , January , 2015 , Pages 77-86 ; 02578972 (ISSN) Rezvani Rad, M ; Farrahi, G. H ; Azadi, M ; Ghodrati, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    This paper presents the out-of-phase thermo-mechanical stress analysis of thermal barrier coating (TBC) system in real working conditions used as thermal barrier in diesel engine cylinder heads. The coating system in this research comprises 350. μm zirconium oxide top coat (TC) and 150. μm metallic bond coat (BC). These layers were deposited on the substrate, aluminum A356 alloy, by the aid of air plasma spray (APS) method. Afterwards, the specimen was subjected to thermo-mechanical fatigue (TMF) loadings. Based on the experimental conditions, FE simulations were performed by both time-independent and time-dependent substrate material properties in ABAQUS software. Simulation results related... 

    On the applicability range of Cassie–Baxter and Wenzel equation: a numerical study

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 10 , 2019 ; 16785878 (ISSN) Azadi Tabar, M ; Barzegar, F ; Ghazanfari, M. H ; Mohammadi, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    In this study, the range of applicability for Cassie–Baxter and Wenzel equations for estimating apparent contact angle on rough surfaces is numerically discussed. To do this, circular drops with different sizes are simulated on rough surfaces with a square pillar pattern and randomly distributed cylindrical pillar. With the aid of numerical method, the local surface fraction, local length fraction and local roughness factor for drops with different sizes on the surface are computed. Then, the global surface fraction and global roughness factor have been compared with the local surface fraction and local roughness factor, respectively. Local surface and local length fractions, as well as...