Loading...
Search for:
babahosseini--hesam
0.06 seconds
Dynamic modeling and sensitivity analysis of atomic force microscope pushing force in nanoparticle manipulation on a rough substrate [electronic resource]
, Article Journal of Advanced Science, Engineering and Medicine ; 2013, Vol. 5, pp. 1-10 ; Mahboobi, Seyed Hanif ; Meghdari, Ali ; Sharif University of Technology
Abstract
An Atomic Force Microscope (AFM) is a capable tool to manipulate nanoparticles by exerting pushing force on the nanoparticles located on the substrate. In reality, the substrate cannot be considered as a smooth surface particularly at the nanoscale. Hence, the particle may encounter a step on the substrate during a manipulation. In this study, dynamics of the nanoparticle on a stepped substrate and critical pushing force in the manipulation are investigated. There are two possible dynamic modes that may happen in the manipulation on the stepped substrate. In one mode, the nanoparticle may slide on the step edge and then climb up to the step which is a desired mode. Another possible mode is...
Modeling and Control of Atomic Force Microscope Based Nanoparticle Manipulation
, M.Sc. Thesis Sharif University of Technology ; Meghdari, Ali (Supervisor)
Abstract
In the recent years, there has been great interest in exploring methods for assembly and manipulation at the micro/nanoscale to build miniaturized systems, devices, structures, and machines. This thesis aims at two-dimensional manipulation of nanoparticle using Atomic Force Microscope (AFM) probe. The nanoprobe is used to push the spherical micro/nanoparticle. Continuum based modeling and simulation of the manipulation task is presented. The proposed nanomanipulation model consists of all effective phenomena in nanoscale. Nanoscale interaction forces, elastic deformation in contact areas, and friction forces in tip/nanoparticle/substrate system are considered. The utilized friction models...
Dynamics modeling of nanoparticle in AFM-based manipulation using two nanoscale friction models
, Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 225-234 ; 9780791843857 (ISBN) ; Mahboobi, S. H ; Meghdari, A ; Sharif University of Technology
2010
Abstract
Application of atomic force microscope (AFM) as a manipulator for pushing-based positioning of nanoparticles has been of considerable interest during recent years. Nevertheless comprehensive researches has been done on modeling and the dynamics analysis of nanoparticle behavior during the positioning process. The development of dynamics modeling of nanoparticle is crucial to have an accurate manipulation. In this paper, a comprehensive model of pushing based manipulation of a nanoparticle by AFM probe is presented. The proposed nanomanipulation model consists of all effective phenomena in nanoscale. Nanoscale interaction forces, elastic deformation in contact areas and friction forces in...
Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle
, Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Vol. 12, Issue. PART A , 2010 , pp. 205-214 ; ISBN: 9780791843857 ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
2010
Abstract
This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the...
Optimal sliding mode control of AFM tip vibration and position during manipulation of a nanoparticle
, Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 12, Issue PART A , 2010 , Pages 205-214 ; 9780791843857 (ISBN) ; Khorsand, M ; Meghdari, A ; Alasty, A ; Sharif University of Technology
American Society of Mechanical Engineers (ASME)
2010
Abstract
This research regards to a two-dimensional lateral pushing nanomanipulation using Atomic Force Microscope (AFM). Yet a reliable control of the AFM tip position during the AFM-based manipulation process is a chief issue since the tip can jump over the target nanoparticle and then the process can fail. However, a detailed Modeling and understanding of the interaction forces on the AFM tip is important for prosperous manipulation control and a nanometer resolution tip positioning. In the proposed model, Lund-Grenoble (LuGre) dynamic friction model is used as friction force on the contact surface between the nanoparticle and the substrate. This model leads to a stick-slip behavior of the...
Classification of vascular function in upper limb using bilateral photoplethysmographic signals
, Article Physiological Measurement ; Volume 29, Issue 3 , 2008 , Pages 365-374 ; 09673334 (ISSN) ; Zahedi, E ; Jajai, H. M ; Sharif University of Technology
2008
Abstract
Bilateral PPG signals have been used for comparative study of two groups of healthy (free from any cardiovascular risk factors) and diabetic (as cardiovascular disease risk group) subjects in the age-matched range 40-50 years. The peripheral blood pulsations were recorded simultaneously from right and left index fingers for 90 s. Pulses have been modeled with the ARX440 model in the interval of 300 sample points with 100 sample points overlap between segments. Model parameters of three segments based on the highest fitness (higher than 80%) of modeled segments were retained for each subject. Subsequently, principal component analysis (PCA) was applied to the parameters of retained segments...
VoIP users’ Quality of Experience (QoE)Evaluation
, Ph.D. Dissertation Sharif University of Technology ; Jahangir, Amir Hossein (Supervisor)
Abstract
Quality of Experience (QoE) indicates the overall quality of one service such as Voice over IP (VoIP) from users' point of view by considering several systems, human, and contextual factors. QoE measurement and prediction are more challenging than Quality of Service (QoS) which is only related to network parameters. There exist various objective and subjective methods for QoE prediction. This research investigates various features affecting QoE by proposing a comprehensive subjective evaluation by employing a large number of users. We show that many unconsidered factors including speaker specifications and signal properties, such as signal-to-noise ratio (SNR), can affect QoE so that the SNR...
Toward a comprehensive subjective evaluation of VoIP users’ quality of experience (QoE): a case study on Persian language
, Article Multimedia Tools and Applications ; Volume 80, Issue 21-23 , 2021 , Pages 31783-31802 ; 13807501 (ISSN) ; Jahangir, A. H ; Hosseini, S. M ; Sharif University of Technology
Springer
2021
Abstract
Quality of Experience (QoE) measures the overall quality of a service from users’ point of view by considering several system, human, and contextual factors. There exist various objective and subjective methods for QoE prediction. Although the subjective approach is more expensive and challenging than the objective approach, QoE’s level can be more accurately determined by a subjective test. This paper investigates various features affecting QoE by proposing a comprehensive subjective evaluation. First, we show that many unconsidered factors can significantly affect QoE. We have generated voice samples featuring different values for novel factors related to the speaker, signal, and network....
Optimal sliding mode control for Atomic Force Microscope tip positioning during nano-manipulation process
, Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 2285-2296 ; 10263098 (ISSN) ; Mahboobi, S. H ; Vakilzadeh, M. K ; Alasty, A ; Meghdari, A ; Sharif University of Technology
Sharif University of Technology
2013
Abstract
This research presents two-dimensional controlled pushing-based nanomanipulation using an Atomic Force Microscope (AFM). A reliable control of the AFM tip position is crucial to AFM-based manipulation since the tip can jump over the target nanoparticle causing the process to fail. However, detailed modeling and an understanding of the interaction forces on the AFM tip have a central role in this process. In the proposed model, the Lund-Grenoble (LuGre) method is used to model the dynamic friction force between the nanoparticle and the substrate. This model leads to the stick-slip behavior of the nanoparticle, which is in agreement with the experimental behavior at nanoscale. Derjaguin...
Prediction of Rolling Element Bearings Degradation Trend Using Limited Data
, M.Sc. Thesis Sharif University of Technology ; Behzad, Mehdi (Supervisor) ; Arghand, Hesam Al-din (Co-Supervisor)
Abstract
Condition monitoring of machinery is of significant economic importance to mitigate production losses resulting from downtimes. Unforeseen failure of roller element bearings is the most common issue observed in industrial units. However, detecting and tracking the progression of these failures through machine vibration monitoring and predicting the deterioration of these rotating components are viable solutions. Numerous studies have focused on using laboratory accelerated life test data for fault detection and remaining useful life prediction of these components. While online monitoring of all equipment in the industry may not be feasible, and conditions in the field differ from laboratory...
Intelligent Fault Diagnosis using Multiple Sensor Data Fusion for Detecting Misalignment and Unbalance
, M.Sc. Thesis Sharif University of Technology ; Behzad, Mehdi (Supervisor) ; Arghand, Hesam Al-Din (Co-Supervisor)
Abstract
Intelligent predictive maintenance is recognized as a cornerstone of Industry 4.0, where intelligent software is employed for the early detection of faults and the prevention of unexpected failures. Recent research indicates that the integration of multi-sensor data for fault diagnosis of gearboxes and bearings, using artificial intelligence models, has been successful. However, conventional methods face several challenges. These include an over-reliance on the signal characteristics of a single sensor and the impracticality of applying intelligent learning methods, particularly deep learning, despite their high potential, due to the unavailability of sufficiently large and diverse...