Loading...
Search for: bahadoran--a
0.095 seconds

    Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing

    , Article Scientific Reports ; Volume 10, Issue 1 , 2020 Bahadoran, M ; Shamloo, A ; Dorri Nokoorani, Y ; Sharif University of Technology
    Nature Research  2020
    Abstract
    In the present study, a hybrid microsphere/hydrogel system, consisting of polyvinyl alcohol (PVA)/sodium alginate (SA) hydrogel incorporating PCL microspheres is introduced as a skin scaffold to accelerate wound healing. The hydrogel substrate was developed using the freeze-thawing method, and the proportion of the involved polymers in its structure was optimized based on the in-vitro assessments. The bFGF-encapsulated PCL microspheres were also fabricated utilizing the double-emulsion solvent evaporation technique. The achieved freeze-dried hybrid system was then characterized by in-vitro and in-vivo experiments. The results obtained from the optimization of the hydrogel showed that... 

    Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Dorri Nokoorani, Y ; Shamloo, A ; Bahadoran, M ; Moravvej, H ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Using the skin tissue engineering approach is a way to help the body to recover its lost skin in cases that the spontaneous healing process is either impossible or inadequate, such as severe wounds or burns. In the present study, chitosan/gelatin-based scaffolds containing 0.25, 0.5, 0.75, and 1% allantoin were created to improve the wounds’ healing process. EDC and NHS were used to cross-link the samples, which were further freeze-dried. Different in-vitro methods were utilized to characterize the specimens, including SEM imaging, PBS absorption and degradation tests, mechanical experiments, allantoin release profile assessment, antibacterial assay, and cell viability and adhesion tests.... 

    New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction

    , Article Electrochimica Acta ; 2022 , Volume 436 ; 00134686 (ISSN) Moradi, M ; Hasanvandian, F ; Bahadoran, A ; Shokri, A ; Zerangnasrabad, S ; Kakavandi, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Developing extremely efficient electrocatalysts for oxygen evolution reactions (OER) is a decisive step toward the progression of rechargeable metal-oxygen batteries, CO2 reduction, and water-splitting. Nanoporous high-entropy transition-metal sulfides (np-HETMS) represent a new generation of promising OER catalysts by virtue of their exceptional catalytic activity. However, their synthesis maintains to be a challenge by reason of the thermodynamic immiscibility of the constituting multi-principal metallic elements in the sulfide structure. Herein, for the first time, the np-HETMS ((CoFeNiMnCu)S2) nanoparticles with pyrite-phase was synthesized via a facile and easy adaptable... 

    Naphtha HDS over Co-Mo/Graphene catalyst synthesized through the spray pyrolysis technique

    , Article Journal of Analytical and Applied Pyrolysis ; Volume 123 , 2017 , Pages 144-151 ; 01652370 (ISSN) Hajjar, Z ; Kazemeini, M ; Rashidi, A ; Soltanali, S ; Bahadoran, F ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Co-Mo/Graphene composite synthesized for the first time through the spray pyrolysis method and applied as an HDS catalyst to produce a sulfur free Naphtha feed. The major advantage of the spray pyrolysis technique was its concurrent capability of the in-situ and simultaneous Co-Mo deposition upon the graphene. The produced material was characterized through the XRD, BET-BJH, FTIR and Raman spectroscopy as well as; the NH3-TPD, TPR, TEM and FESEM techniques. The prepared catalyst showed unique properties such as; high degree of total acidity of 5.1 (vs. the usual 0.2–2.0) mmole NH3/g-cat and a relatively high surface area of 705 vs. 189 m2/g of the commercial material. Furthermore, the... 

    Design and Development of a Compound Skin Scaffold Capable of Drug Delivery for Skin Wound Healing

    , M.Sc. Thesis Sharif University of Technology Bahadoran, Maedeh (Author) ; Shamloo, Amir (Supervisor) ; Firoozbakhsh, Keykhosrow (Supervisor)
    Abstract
    Skin tissue as the first protective barrier to the body is always exposed to the most injuries. The purpose of this project is to design an optimum skin scaffold capable of drug delivery for skin wounds healing. To this end, the skin scaffold has been considered as a combination of a hydrogel structure containing polymer microspheres carrying growth factor. Polyvinyl alcohol and sodium alginate polymers were utilized to make the hydrogel substrate. The hydrogel structure was optimized from the viewpoint of the percentage of gelation, water absorption, porosity, mechanical properties, biodegradability, biocompatibility and considering the volume percent of utilized polymers and the... 

    Explicit finite element modeling of wear within the patellofemoral joint in total knee replacement

    , Article 26th National and 4th International Iranian Conference on Biomedical Engineering, ICBME 2019, 27 November 2019 through 28 November 2019 ; 2019 , Pages 208-212 ; 9781728156637 (ISBN) Bahadoran, M ; Dorri Nokoorani, Y ; Barati, K ; Farahmand, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Total knee replacement (TKR) surgery is one of the most successful and cost-effective procedures for treating knee injuries performed in orthopedics. However, the knee replacement revision surgery will probably be required after some years. Wear at the contact area between femoral metal component and the polyethylene inserts in TKR is recognized as one of the foremost causes of prosthesis failure and necessity of revision surgery. In the present study, focusing on the patellofemoral joint (PFJ), the wear at the contact area between the patellar and femoral components has been simulated employing the explicit finite element modeling. In this regard, common types of patellar component surface... 

    Engineering stable construction of MnCo2O4 yolk-in-double-shell amalgamated with bio-synthesized ZnMn2O4 nanoparticles for superior artificial CO2 reduction

    , Article Journal of Materials Chemistry A ; Volume 11, Issue 36 , 2023 , Pages 19465-19482 ; 20507488 (ISSN) Bahadoran, A ; Roshan De Lile, J ; Hasanvandian, F ; Sharghi, M ; Kakavandi, B ; Mishra, Y. K ; Giannakis, S ; Rama Krishna, S ; Sharif University of Technology
    Royal Society of Chemistry  2023
    Abstract
    Multi-shelled configurations of mixed bimetallic oxides, which are well-known candidates for CO2 photoreduction, were prepared via the calcination of rigid spheres of the self-template glycerate-assisted metal-organic structure. However, the fabrication of highly efficient, stable constructions is still a significant challenge. The effectiveness of this strategy is restricted by the questionable stability of the structure, which collapses under harsh calcination conditions. Herein, we focused our attention on manipulating the initial solvothermal reaction, through which MnCo2O4 yolk-in-double-shell hollow spheres (YDSHS-MCO) were engineered via the formation of two sequential yolk-shells,... 

    Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 323-334 ; 1738494X (ISSN) Zareh, S. H ; Sarrafan, A ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
    2012
    Abstract
    A novel intelligent semi-active control system for an eleven degrees of freedom passenger car's suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network... 

    Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend

    , Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) Dashti, M ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
    2012
    Abstract
    Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the... 

    A comparative study of the performance of a SI engine fuelled by natural gas as alternative fuel by thermodynamic simulation

    , Article 2009 ASME Internal Combustion Engine Division Fall Technical Conference, ICEF 2009, Lucerne, 27 September 2009 through 30 September 2009 ; 2009 , Pages 49-57 ; 9780791843635 (ISBN) Dashti, M ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2009
    Abstract
    With the declining energy resources and increase of pollutant emissions, a great deal of efforts has been focused on the development of alternatives for fossil fuels. One of the promising alternative fuels to gasoline in the internal combustion engine is natural gas [1-5]. The application of natural gas in current internal combustion engines is realistic due to its many benefits. The higher thermal efficiency due to the higher octane value and lower exhaust emissions including CO2 as a result of the lower carbon to hydrogen ratio of the fuel are the two important feature of using CNG as an alternative fuel. It is well known that computer simulation codes are valuable economically as a cost... 

    Analytical and experimental analyses of nonlinear vibrations in a rotary inverted pendulum

    , Article Nonlinear Dynamics ; Volume 107, Issue 3 , 2022 , Pages 1887-1902 ; 0924090X (ISSN) Dolatabad, M.R ; Pasharavesh, A ; Khayyat, A. A. A ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Gaining insight into possible vibratory responses of dynamical systems around their stable equilibria is an essential step, which must be taken before their design and application. The results of such a study can significantly help prevent instability in closed-loop stabilized systems by avoiding the excitation of the system in the neighborhood of its resonance. This paper investigates nonlinear oscillations of a rotary inverted pendulum (RIP) with a full-state feedback controller. Lagrange’s equations are employed to derive an accurate 2-DoF mathematical model, whose parameter values are extracted by both the measurement and 3D modeling of the real system components. Although the governing... 

    A suction-controlled ring device to measure the coefficient of lateral soil pressure in unsaturated soils

    , Article Geotechnical Testing Journal ; Volume 44, Issue 1 , 2020 Pirjalili, A ; Garakani, A. A ; Golshani, A ; Mirzaii, A ; Sharif University of Technology
    ASTM International  2020
    Abstract
    A suction-controlled ring device has been developed to continuously measure the coefficient of lateral soil pressure in deformable unsaturated soil samples from the at-rest to the active condition under application of increasing vertical pressure and controlled matric suction. The device incorporates a thin aluminum specimen ring equipped with horizontal strain gages for recording the lateral soil strains. In addition, a sensor recording water volume changes is utilized to continuously monitor the degree of saturation of the soil sample during tests. The matric suction within the soil texture is controlled using the axis translation technique. In order to verify the performance of the ring... 

    Gum tragacanth gels as a new supporting matrix for immobilization of whole-cell

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 24, Issue 4 , 2005 , Pages 1-7 ; 10219986 (ISSN) Otady, M ; Vaziri, A ; Seifkordi, A. A ; Kheirolomoom, A ; Sharif University of Technology
    2005
    Abstract
    We introduce a new smooth, non-toxic, biocompatible method for cross-linking of gum tragacanth (GT), a polysaccharide of natural origin, in order to serve as a new supporting matrix for immobilization systems. The modified gum is used as a matrix for the catalysis of the conversion of benzyl penicillin to 6-aminopenicillanic acid (6-APA) by means of Escherichia coli ATCC11105 with penicillin G acylase (PGA) activity. The results show that GT beads can not only serve as a proper matrix for immobilization, but show enhanced hydrolysis rate and stability compared to other immobilization systems used for this reaction. This signifies the potential of GT as a biocompatible matrix for... 

    True Class-E Design For Inductive Coupling Wireless Power Transfer Applications

    , Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 864-868 ; 9781665480871 (ISBN) Haeri, A. A. R ; Safarian, A ; Fotowat Ahmady, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The Class-E power amplifier has been widely studied and formulated in the literature. Although the majority of reported inductive coupling wireless power transfer (WPT) systems use a class-E power amplifier for driving the primary coil, still there is a lack of a comprehensive study on class-E circuit dedicated to WPT, providing a set of closed form design equations for proper class-E operation. This paper presents the required design equations needed to design a 'true' class-E circuit for WPT applications. Equations for the series-tuned secondary coil WPT system are presented, as well as two different design procedures for the parallel-tuned secondary coil. The derived equations have been... 

    Crashworthiness determination of side doors and B pillar of a vehicle subjected to pole side impact

    , Article Applied Mechanics and Materials ; Vol. 663, issue , 2014 , p. 552-556 Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2014
    Abstract
    Pole Side Impact Tes is one out of three crash tests described by Euro NCAP standard for star rating of a vehicle and is required for assessing the Adult Occupant Protection. In this paper the goal is to determine the crashworthiness of side doors and B pillar in a Pole Side Impact Test based on Euro New Car Assessment Program (Euro-NCAP) using computer and simulation method. In this matter, a vehicle model has been prepared and meshed using Hypermesh and CATIA. The velocity of 29 km/h has been assigned to the vehicle which was on top of a cart while the pole has been assigned as a rigid static object based on Euro NCAP requirements specifically. Results show that different amounts of energy... 

    Investigation of Thickness Influences On Energy Absorption For Side Doors And B Pillar In Euro NCAP Pole Side Impact Test

    , Article Applied Mechanics and Materials ; Vol. 663, issue , Oct , 2014 , p. 585-589 Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2014
    Abstract
    To assess a car under the Euro New Car Assessment Program (Euro-NCAP), Adult Occupant Protection is one out of three parameters which need to be calculated with a weight factor of 50% while the other parameters, Child Occupant Protection and Pedestrian Occupant Protection, have a weight factor of 20%. The Pole Side Impact Test, beside two other tests, Side and Front Impact, is also required to calculate the Adult Occupant Protection. It shows how important the Pole Side Impact Test is and what an effective role it has in the car rating assessment. In this paper, the objective is to evaluate the effect of thickness on the energy absorbed by the side doors and the B pillar and its... 

    Crashworthiness determination for front and rear doors and B pillar subjected to side impact crash by a mobile deformable barrier

    , Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 392-395 ; 19366612 (ISSN) Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2013
    Abstract
    In Euro NCAP standard, adult protection is one of the most important rating scores with 50% weight factor while child protection and pedestrian protection are accounted into consideration with 20% weight factor. For adult protection testing, three tests are required to perform: (1) side impact, (2) pole impact, (3) front impact. In the side impact test, dummy's head, chest, shoulder, thorax, ribs, abdomen, pelvic and femur must be studied to evaluate the rating score. Crashworthiness of a car during side impact can describe the score rated for that car. In this paper the goal is to determine the crashworthiness of side doors and B-pillar in side impact crash est by simulation using LS DYNA... 

    Effect of material and thickness of side doors and B pillar on crashworthiness in euro NCAP side impact crash test

    , Article Advanced Science Letters ; Volume 19, Issue 2 , 2013 , Pages 420-424 ; 19366612 (ISSN) Lilehkoohi, A. H ; Faieza, A. A ; Sahari, B. B ; Nuraini, A. A ; Halali, M ; Sharif University of Technology
    2013
    Abstract
    In side impact test which is one out of three tests of Euro NCAP standard, front and rear doors and B pillar are most absorbance parts among vehicle body parts. Passengers are highly in danger while side crash, because of the distance between passenger's head and vehicle body. In this paper effect of material and thickness of doors and B-pillar and their absorbed energy during crash and improvement of its crashworthiness with respect to light weight design are studied using LS DYNA solver. The objective of this paper is to propose a material for doors and B-pillar with a specified thickness to achieve maximum absorbed energy and minimum weight. The shape of the doors and B-pillar remains... 

    Effect of recycle gas composition of the performance of Fischer-Tropsch catalyst

    , Article Petroleum Science and Technology ; Volume 28, Issue 5 , 2010 , Pages 458-468 ; 10916466 (ISSN) Rohani, A. A ; Khorashe, F ; Safekordi, A. A ; Tavassoli, A ; Sharif University of Technology
    2010
    Abstract
    In this study, the influence of CO2 and CH4 on the performance and selectivity of Co-Ru/Al2O3 catalyst is investigated by injection of these gases (0-20 vol.% of feed) to the feed stream. The effect of temperature and feed flow rate are also inspected. The results show that low amounts of CO2 in the feed stream do not change the catalyst activity, but increasing the amount of CO2 (more than 10 vol.%), causes the CO conversion to decrease and the selectivity of heavy components to increase. Methane acts as an inert gas and does not affect the catalyst performance. Increasing feed flow rate has a negative effect on both CO conversion and heavy component selectivity. By raising the temperature,... 

    Simulation and estimation of normal dispersion phenomenon in an acentric organic crystal (NPP) by the quantum photonic approach

    , Article Modelling and Simulation in Materials Science and Engineering ; Volume 15, Issue 8 , 2007 , Pages 869-878 ; 09650393 (ISSN) Kaatuzian, H ; Zarch, A. W ; Oskouei, A. A ; Amjadi, A ; Sharif University of Technology
    2007
    Abstract
    In this paper, we present a nano-quantum photonic approach for the calculation of normal dispersion phenomena in organic crystals such as N-(4-nitrophenyl)-L-prolinol(NPP). We assume that a laser beam consists of a flow of energetic particles that interact with the distorted π-electron system. We approximate the distorted π-electron cloud by an ellipse to simplify calculations. By the precise analysis of photon interaction with the π-electron system of benzene ring in the NPP crystal, we obtain the refractive index in any wavelength by Monte Carlo simulation. The maximum error between our simulation results and the measurement data is 0.058, which is agreeable. © 2007 IOP Publishing Ltd