Loading...
Search for:
bahadormanesh--behrouz
0.086 seconds
Electrodeposition of Ni-Co/SiC Composite Coatings
, M.Sc. Thesis Sharif University of Technology ; Dolati, Abolghasem (Supervisor)
Abstract
Ni-Co/SiC composite coatings with various contents of SiC nano particles were electrodeposited in a modified watt type of Ni-Co bath containing 20 nm SiC nano particles to be codeposited. The influences of the SiC concentration, current density, stirring rate of the deposition bath on the composition of the coatings were investigated and these parameters optimized for highest amount of SiC codeposition. The optimized deposition parameters were 40 g/l SiC and 480 rpm stirring rate and current density equal to 4 A/dm2. Ni-Co/SiC composite coating was deposited with the maximum particles content of 30.5 volume percent. Linear voltammetry demonstrates addition of the SiC to the Ni-Co deposition...
The kinetics of Ni-Co/SiC composite coatings electrodeposition
, Article Journal of Alloys and Compounds ; Volume 504, Issue 2 , 2010 , Pages 514-518 ; 09258388 (ISSN) ; Dolati, A ; Sharif University of Technology
2010
Abstract
Ni-Co/SiC composite coatings with various contents of SiC particles were electrodeposited in a modified Watt's type of Ni-Co bath containing suspended 20 nm SiC particles. Deposition parameters including current density, bath SiC concentration and magnetic stirring rate were optimized for the highest amount of the SiC codeposition: the current density of 4 A/dm2, 40 g/dm 3 SiC concentration and 480 rpm stirring rate. In order to study the SiC particles codeposition, the Guglielmi's model of codeposition was modified for high volume percentages of the second phase and the modified model was employed to explain the effects of deposition parameters on the kinetics of the particles codeposition....
Electrodeposition of Ni-P/Zn-Ni Compositionally Modulated Multilayer Coatings using Single bath Technique
, Ph.D. Dissertation Sharif University of Technology ; Ghorbani, Mohammad (Supervisor)
Abstract
In present study, with the aim of fabrication of a sacrificial coating with superior barrier properties in comparison with Zn-Ni monolayer, a single Zn-Ni-P bath was developed for electrodeposition of Ni-P/Zn-Ni multilayers. The deposits that were prepared in developed bath at 5 mA/cm2 was dominantly Ni-P containing less than 1 percent Zn and the alloy deposited in 60 mA/cm2 was mainly Zn-Ni containing around 3.2 wt.% P content. The effects of bath ingredients on the electrodeposition mechanism was analyzed through voltammetry. Also, the composition, surface morphology and the growth mechanism as well as the phase structure of deposits were studied via SEM, EDS and XRD analysis. Zn-Ni...
Ni-P/Zn-Ni compositionally modulated multilayer coatings – part 1: electrodeposition and growth mechanism, composition, morphology, roughness and structure
, Article Applied Surface Science ; Volume 442 , 2018 , Pages 275-287 ; 01694332 (ISSN) ; Ghorbani, M ; Sharif University of Technology
Elsevier B.V
2018
Abstract
The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the cathodic current density. The composition, surface morphology, roughness, layers growth pattern as well as the phase structure of deposits were extensively studied via SEM, EDS, AFM and XRD analysis. Effects of bath ingredients on the electrodeposition behavior were analyzed through cathodic linear sweep voltammetry. Although the concentration of Zn2+ in bath was 13 times higher than Ni2+, the Zn-Ni deposition potential was much nearer to Ni deposition potential rather than that of Zn. Addition of NaH2PO2 to the Ni deposition bath considerably raised the current...
Ni-P/Zn-Ni compositionally modulated multilayer coatings – part 2: corrosion and protection mechanisms
, Article Applied Surface Science ; Volume 442 , 2018 , Pages 313-321 ; 01694332 (ISSN) ; Ghorbani, M ; Sharif University of Technology
Elsevier B.V
2018
Abstract
The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with...
Electrodeposition of Zn–Ni–P compositionally modulated multilayer coatings: An attempt to deposit Ni–P and Zn–Ni alloys from a single bath
, Article Electrochemistry Communications ; Volume 81 , 2017 , Pages 93-96 ; 13882481 (ISSN) ; Ghorbani, M ; Sharif University of Technology
Elsevier Inc
2017
Abstract
The effects of bath composition and deposition variables on the electrodeposition of Zn–Ni–P alloys were studied in order to develop a single bath for deposition of Ni–P/Zn–Ni compositionally modulated multilayer coatings (CMMCs). The basis for development of the bath was a large increase in the Ni deposition rate compared to that of Zn at low deposition overpotentials combined with the impossibility of codeposition of Zn with P. EDS analysis demonstrated that the deposits obtained from the Zn–Ni–P bath at low overpotentials were practically all Ni–P, while the alloy deposited at high overpotentials was mainly Zn–Ni with around 3.2 wt% P content. © 2017 Elsevier B.V
Electrodeposition and characterization of Ni-Co/SiC nanocomposite coatings
, Article Journal of Alloys and Compounds ; Volume 509, Issue 39 , 2011 , Pages 9406-9412 ; 09258388 (ISSN) ; Dolati, A ; Ahmadi, M. R ; Sharif University of Technology
2011
Abstract
Ni-Co/SiC nanocomposite coatings were electrodeposited in a modified watt type of Ni-Co bath containing 20 nm SiC particles to be codeposited. Potentiodynamic polarization tests were conducted to study the effect of the SiC particulates on the electrodeposition of Ni and Co. Scanning electron microscopy was used to assess the morphology of the Ni-Co alloy and Ni-Co/SiC nanocomposite coatings. The distribution of the particulates in the matrix was considered by means of transmission electron microscopy. Applying nanomechanical testing instruments coupled to atomic force microscopy, mechanical properties of the alloy and composite coatings were studied and compared. The presence of 11 vol.%...
Electrodeposition of nanocrystalline Zn/Ni multilayer coatings from single bath: influences of deposition current densities and number of layers on characteristics of deposits
, Article Applied Surface Science ; Volume 404 , 2017 , Pages 101-109 ; 01694332 (ISSN) ; Ghorbani, M ; Lotfi Kordkolaei, N ; Sharif University of Technology
2017
Abstract
Zn/Ni nanocrystalline multilayer coatings were electrodeposited using single bath method and switching current densities. Effect of deposition current densities (i1 and i2) and number of layers (n) on composition, surface morphology and roughness, microhardness, phase structure and corrosion resistance of Zn/Ni multilayers were studied and compared with that of single layer. Analyzing and optimizing the influences of mentioned parameters on corrosion resistance of multilayers carried out through Response Surface Methodology. The model based on RSM results demonstrated that improvement in corrosion resistance due to increase in “difference of deposition current densities” was more effective...
A reconfigurable fault-tolerant routing algorithm to optimize the network-on-chip performance and latency in presence of intermittent and permanent faults
, Article Proceedings - IEEE International Conference on Computer Design: VLSI in Computers and Processors ; 2011 , Pages 433-434 ; 10636404 (ISSN) ; 9781457719523 (ISBN) ; Modarressi, M ; Sarbazi Azad, H ; Sharif University of Technology
2011
Abstract
As the semiconductor industry advances to the deep sub-micron and nano technology points, the on-chip components are more prone to the defects during manufacturing and faults during system operation. Consequently, fault tolerant techniques are essential to improve the yield of modern complex chips. We propose a fault-tolerant routing algorithm that keeps the negative effect of faulty components on the NoC power and performance as low as possible. Targeting intermittent faults, we achieve fault tolerance by employing a simple and fast mechanism composed of two processes: NoC monitoring and route adaption. Experimental results show the effectiveness of the proposed technique, in that it offers...
Dynamic Modeling and Congestion Control in Computer Networks
, M.Sc. Thesis Sharif University of Technology ; Jahangir, Amir Hossein (Supervisor) ; Ebrahim, Behrouz (Co-Advisor)
Abstract
Active queue management (AQM) is a key factor in congestion control and should provide appropriate feedback for flow control in traffic sources to overcome the congestion problem. Beside providing congestion control, achieving predictable queuing delay, maximizing link utilization, simplicity and robustness are also the main objectives of an AQM controller. We propose in this thesis an improved queue dynamic model while incorporating the packet drop probability as well. The proposed model is evaluated using ns2 platform. By applying the improved model, a new compensated proportionalintegral- derivative (PID) AQM controller is developed for TCP network. The time-varying nature of the network...
Recovery of Uranium(VI) from UCF Waste by Selective Transportacross Aliquid Membrane
, M.Sc. Thesis Sharif University of Technology ; Samadfam, Mohammad (Supervisor) ; Fasihi, Javad (Supervisor)
Abstract
Due to environmental and economical impacts, recovery of the uranium from nuclear wastes is of continuing interest.This work reports the separation of uranyl ionusing transport technique through chloroform liquid membrane containing a mixture of DBDA15C4 and oleic acidas cooperative carrier.The pH of the feed phase (10-4 M of UO22+) was adjusted with nitric acid and acetic acid/NaOH for pHrange of 2-6.The receiving phase was hydrochloric acid 1M.The organic phase was chloroform which includesthe carrier DBDA15C4 (0.0001 M) and also the oleic acid (0.015M).The results showed that the transport increased with increasing pH and reached to maximumat pH of 5.Maximum cooperative effect of oleic...
Determination of Optimum Material and Thickness of Filter Based on Radiation Energy in Digital Industrial Radiography (CR) Using MCNP Monte Carlo Simulation Code
, M.Sc. Thesis Sharif University of Technology ; Vosoughi, Naser (Supervisor) ; Rokrok, Behrouz (Supervisor) ; Movafeghi, Amir (Co-Supervisor)
Abstract
In this study, the effect of external filter on the various parameters of image quality in digital industrial radiography by CR method for steel and aluminum piece has been investigated. The filter reduces the noise of scattered beams by absorbing the low-energy beams in the X-ray spectrum that are most likely to be scattered, but high filter thicknesses can attenuate the more energetic beams and have a negatively effect on the image quality. On the other hand, the absorption of those low-energy beams increases the average spectrum energy and thus reduce the contrast, so it is necessary to use the appropriate material and thickness of the filter. For this purpose, to examine the filter...