Loading...
Search for: bararpour--toufigh
0.165 seconds

    Photocatalytic removal of 2-nitrophenol using silver and sulfur co-doped TiO2 under natural solar light

    , Article Water Science and Technology ; Volume 72, Issue 3 , 2015 , Pages 339-346 ; 02731223 (ISSN) Feilizadeh, M ; Delparish, A ; Toufigh Bararpour, S ; Abedini Najafabadi, H ; Zakeri, S. M. E ; Vossoughi, M ; Sharif University of Technology
    IWA Publishing  2015
    Abstract
    To overcome the drawback of poor solar light utilization brought about by the narrow photoresponse range of TiO2, a silver and sulfur co-doped TiO2 was synthesized. Using the prepared catalyst, solar photocatalytic degradation of 2-nitrophenol (2-NP) by a TiO2-based catalyst was studied for the first time. Effects of the co-doping on the structural, optical and morphological properties of the synthesized nanoparticles were investigated by different characterization methods: X-ray diffraction, N2 adsorption-desorption measurements, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible diffuse reflectance spectroscopy and Fourier... 

    Interface behavior between carbon-fiber polymer and sand

    , Article Journal of Testing and Evaluation ; Volume 44, Issue 1 , 2016 , Pages 385-390 ; 00903973 (ISSN) Toufigh, V ; Ouria, A ; Desai, C. S ; Javid, N ; Toufigh, V ; Saadatmanesh, H ; Sharif University of Technology
    ASTM International  2016
    Abstract
    Interface shear strength between soil and structural materials is dependent on the confining pressure. To increase the confining pressure, different methods of reinforcement and materials, such as carbon-fiber-reinforced polymer (CFRP) can be used. The shear strength of CFRP-improved soil is dependent on the interface properties of the soil and CFRP. The objective of this study is to investigate the interface properties (friction angle and adhesion) of sand and FRP experimentally using the direct shear test apparatus. To increase the surface roughness to improve the interface properties, a layer of sand was placed on saturated carbon fiber during the curing period [spark plasma sintering... 

    Investigation of Nano-Semiconductors for Decontamination of Pollutants under Solar Light

    , M.Sc. Thesis Sharif University of Technology Bararpour, Toufigh (Author) ; Soltanieh, Mohammad (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Feilizadeh, Mehrzad (Co-Advisor)
    Abstract
    Photocatalytic degradation is one of the developing modern and effective methods for decontamination of hazardous pollutants of chemical industrial wastewater. For this purpose, in this research, the efficiency of the photocatalytic process in degradation of Cortisone Acetate is investigated under solar light irradiation, and the effect of two useful oxidants, potassium persulfate (PDS) and potassium proxy mono sulfate (PMS), on the degradation efficiency is examined. At first, the single effect of these two oxidants, and then their interaction effects with the photocatalyst (TiO2-P25) and solution pH by analytical analysis and with the help of Response Surface Methodology (RSM) and... 

    Quantification of seismic performance factors for ribbed bracing system

    , Article Engineering Structures ; Volume 176 , 2018 , Pages 159-174 ; 01410296 (ISSN) Toufigh, V ; Arzeytoon, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this investigation, seismic behavior and design coefficients of the ribbed bracing system (RBS) are evaluated by considering various archetypes that reflect configuration variability. RBS is a lateral bracing system with a unique mechanics that prevents buckling-induced damage by allowing free deformation of brace under compression. After successful experimental validation and numerical evaluation of RBS specimens in previous studies, FEMA P695 methodology is adopted in this study to subject 48 archetype structures to incremental dynamic analysis (IDA) procedure. Evaluation of the probabilistic collapse capacity of the archetypes against the code requirements reveals that RBS system can... 

    The effects of stabilizers on the thermal and the mechanical properties of rammed earth at various humidities and their environmental impacts

    , Article Construction and Building Materials ; Volume 200 , 2019 , Pages 616-629 ; 09500618 (ISSN) Toufigh, V ; Kianfar, E ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The overall behavior of rammed earth (RE) as a low embodied energy construction method can be enhanced by using stabilizers. Several studies have been performed on cement and lime stabilized RE. However, studies on other additives, especially the sustainable ones, are limited. In this research, the effect of stabilizers including cement, pozzolan, microsilica, fiberglass, guar gum and phase change material (PCM) was evaluated on the performance of RE mixtures. The mixtures were assessed by considering the durability, shrinkage, thermal conductivity, mechanical properties and their sensitivity to the humidity. Then, the correlations were determined between the mechanical properties and the... 

    Cementitious mortars containing pozzolana under elevated temperatures

    , Article Structural Concrete ; Volume 23, Issue 5 , 2022 , Pages 3294-3312 ; 14644177 (ISSN) Toufigh, V ; Pachideh, G ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    In recent years, pozzolana are being increasingly used in different types of concretes and mortars. This investigation aims to evaluate the effect of replacing 7, 14, 21, and 28% cement (by weight) with silica fume (SF), granulated blast furnace slag (GBFS), zeolite, and fly ash (FA) under elevated temperatures. Forty mix designs were built with various water-to-cement ratios and plasticizers. Three hundred and six specimens were prepared, and the flexural, uniaxial compression and tensile tests were performed on specimens after exposure to elevated temperatures between 25°C and 900°C. The X-ray diffraction (XRD) test was then performed on the two series of specimens. Accordingly, the... 

    Experimental and numerical investigation of thermal enhancement methods on rammed-earth materials

    , Article Solar Energy ; Volume 244 , 2022 , Pages 474-483 ; 0038092X (ISSN) Toufigh, V ; Samadianfard, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The renewed attention paid to rammed earth materials in recent decades is related to their sustainability, high thermo-buffering capacity and relatively low cost. The energy performance of rammed earth materials can be enhanced with stabilization. However, some of thermal enhancement methods have destructive side-effects. In the current study, the effect of three different methods was investigated on thirteen different alternatives of rammed earth materials to improve energy efficiency of buildings. These methods include using phase change materials, cementitious admixtures and external insulators. Thermo-dynamic parameters such as time lag, thermal conductivity and heat flux were measured... 

    Performance evaluation of slag-based concrete at elevated temperatures by a novel machine learning approach

    , Article Construction and Building Materials ; Volume 358 , 2022 ; 09500618 (ISSN) Toufigh, V ; Palizi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Ground granulated blast furnace slag is a sustainable material and supplementary for cement in the concrete industry. Different behavioral aspects must be assessed to achieve reliable sustainable materials, including post-fire mechanical properties. One robust tool is the machine learning approach to train prediction models. This study proposes a novel machine learning algorithm, hybrid support vector regression and dolphin echolocation algorithm (SVR-DE), to predict the post-fire compressive strength ratio of slag-based concrete. In this regard, SVR hyper-parameters were tuned by the DE optimization algorithm. Four kernel functions were implemented in SVR formulation: linear, sigmoid,... 

    Experimental Investigation of Interface Behavior between Polymer Concrete and Sand

    , M.Sc. Thesis Sharif University of Technology Shirkhorshidi, Masoud (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    The behavior of soil-structure interface plays an important role in the static and dynamic analysis of soil-structure systems. Development of new materials such as polymer concrete requires an understanding of the behavior and their interaction with other materials. In this investigation, the interface behavior between polymer concrete and ordinary concrete with sand was studied using interface direct shear tests. In order to find optimum content of epoxy resin for polymer concrete, a series of tensile and compressive tests were conducted. To study the mechanical properties of concretes-sand interfaces behavior two series of interface direct shear tests were conducted at three different... 

    Modeling of The Behavior of Various Concretes and Their Interface with Sand

    , M.Sc. Thesis Sharif University of Technology Hosseinali, Masoud (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    The understanding of the mechanical behavior of engineering materials and their interfaces plays an important role in the prediction, analysis, and desing of engineering systems. Considering the important role of understanding and describing the behavior of materials and systems, this thesis is devided into three sections: 1) Modeling the behavior of polymer concrete under uniaxial compression, 2) Modeling the behavior of various light- and normal- weight concretes under uniaxial and triaxial compression, and 3) Modeling the behaivor of interfaces between polymer concrete and normal concrete with sand. In this context, various constitutive models were investigated and compared together,... 

    Refinement of Buckling-restraint Braces Behavior Using Fiber Reinforced Polymer (FRP) Strips

    , M.Sc. Thesis Sharif University of Technology Bashiri, Mehdi (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    In order to enhance the behavior of structures during an earthquake, various system have been proposed and used in recent years. The main purpose of these systems is to provide enough deuctility to dissipate the input energy of the earthquake. Buckling restrained braces are used extensively in seismic-restraint structures due to their sutiable cyclic behavior. They consist of a core energy dissipation and external restraining component. The purpose of this study is to improve the behavior of BRBs using FRP strips as a restraining component. In this study ABAQUS is used to model analyze the structure. Concrete Damage Plasticity (CPD) is used to model concrete, Hashin model used for FRP strips... 

    Experimental and Analytical Studies on Interface between Tire and Pavement

    , M.Sc. Thesis Sharif University of Technology Jafari, Khashayar (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    Understanding and defining mechanical behavior of engineering materials play an important role in the prediction of material response as well as analysis and design of engineering structures. In this investigation, polymer concrete (PC) with three different epoxy resin contents, ordinary cement concrete (OCC), lightweight concrete (LWC) and lime-mortar soil (LMS) have been studied under uniaxial and triaxial compression tests to determine their mechanical behavior by measuring axial stress-strain and volumetric strain versus axial strain curves. According to the results, PC showed higher strength, ductility and energy absorption than that of OCC and LWC. Nowadays, waste tire rubber is used... 

    Experimental Investigation on Debonding between FRP sheets and Structures

    , M.Sc. Thesis Sharif University of Technology Haghighi, Sina (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    This study has investigated the effects of different environmental conditions on the bond at the interface between two fiber reinforced polymer (FRP) layers. A total of 945 single lap splice coupons with three bond length were made using wet lay-up technic. There were used three unidirectional fabrics and one type of epoxy resin. A Uniaxial tensile test was performed on samples after 2, 4, 12, 20, 28, 36 and 48 weeks of exposure. Also series of test were conducted in order to determine the minimum lap splice length of single splice FRP samples. The experimental results indicated reduction of bond strength in glass specimens that was 17 % after 48 weeks of exposure while for same amount of... 

    Estimation of the Compressive Strength of GGBFS based Alkali-Activated Concrete

    , M.Sc. Thesis Sharif University of Technology Jafari, Alireza (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    Ground granulated blast furnace slag (GGBFS) based alkali-activated concrete (GAAC) is one of the eco-friendly alternatives of traditional concrete, which uses industrial byproducts instead of ordinary Portland cement (OPC). Besides environmental benefits, substituting OPC concrete with GAAC has some economic advantages, while it successfully meets the concrete structural requirements in both mechanical and durability characteristics. Despite this fact, employing GAAC in the construction industry has been limited due to a lack of standard mix design code.This study aims to develop an accurate prediction model for the compressive strength of GAAC by employing the most appropriate machine... 

    Nondestructive Test in Geopolymer Concrete with Aid of Ultrasonic Waves

    , M.Sc. Thesis Sharif University of Technology Nouri, Ali (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    In recent decades, particle composite materials have a wide range of applications in engineering. Particle composites are a group of heterogeneous materials with different length scales and are characterized by particles that are randomly distributed in a matrix phase. Geopolymer concrete is a special type of concrete that its binder is made by reacting alumina and silicate carriers with an activating agent and in recent years with the expansion of its use has reduced the amount of cement consumption. In addition to the many advantages of geopolymer concrete, it has disadvantages in terms of setting time. That is why the use of cement has been proposed as a solution to the problem. This... 

    Effect of the Blast Furnace Slag on Microstructural and Transport Properties of the Fly Ash-based Geopolymers

    , M.Sc. Thesis Sharif University of Technology Azimi, Zahir (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    Alkali-activated fly ash-slag (AAFS) is a new type of sustainable construction material widely studied in recent years for its desirable mechanical properties and low environmental impacts. In this study, the effects of the slag incorporation from 10 to 30% of fly ash are investigated on the strength, pore structure, and transport properties of the AAFS with various levels of fly ash replacements with slag. The unconfined compression and ultrasonic pulse velocity tests were performed to evaluate the mechanical properties of the AAFS concrete. Microstructural and mineralogical changes were studied by porosity, N2-adsorption/desorption, and SEM/EDX tests. Additionally, transport properties... 

    Investigation on the Structural Behavior of Rammed Earth Structures

    , Ph.D. Dissertation Sharif University of Technology Kianfar, Ehsan (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    Nowadays, construction with earthen materials has become more widespread due to their advantages: low construction cost, low embodied energy, application of green materials, and recyclability. Rammed earth (RE) as a sustainable construction has been used worldwide for decades. They are built in many countries such as Australia, China, India, and many parts of Africa and Europe. The rammed earth materials are cheap, accessible, and green and provide good thermal buffering. Stabilizers such as cement and lime with high embodied energy are frequently used in rammed earth construction to enhance materials' mechanical properties and durability. Stabilizers in RE materials could affect the energy... 

    Damage Detection and Health Monitoring of Geopolymer Concrete Using Ultrasound Waves and Machine Learning

    , M.Sc. Thesis Sharif University of Technology Rahmati, Mohammad (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    The behavior of construction materials at high temperatures has been an important aspect of researches in recent years. The first part of the current research aims to non-destructively monitor the formation and growth of damage at geopolymer concrete (GPC) after being exposed to high temperatures using linear and nonlinear ultrasonic techniques. Ultrasonic waveform and pulse velocity (UPV) tests were conducted on the specimens before and after exposure to the temperatures. Nonlinear wave signals were processed in phase-space domain for qualitative health monitoring of GPC. Furthermore, feature extraction was applied to phase-plane attractors using fractal dimension for quantitative... 

    HPASC – OPCC bi-surface Shear Strength Prediction Model Using Deep Learning

    , M.Sc. Thesis Sharif University of Technology Khademi, Pooria (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    Selecting a suitable material is crucial for repairing the old concrete structures and joining precast panels of bridges, especially the bond strength between the substrate concrete and the overlay material. In this regard, this research focused on high-performance alkali-activated slag concrete (HPASC) as a new concrete used as an overlay on ordinary Portland cement concrete (OPCC) as a block of old concrete. Approximately four hundred bi-surface shear (BSS) tests were performed to evaluate the interface properties of OPCC and HPASC. HPASC specimens were designed with different NaOH molarity, silica fume (SF) content, steel fiber content, age of repair material, and proportion of grooved... 

    Deep learning-based Models for Distributed Damage Detection and Quantification in Concrete Using Sinusoidal Ultrasonic Response Signals

    , M.Sc. Thesis Sharif University of Technology Ranjbar, Iman (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    In this thesis, supervised and unsupervised deep learning-based frameworks were proposed for distributed damage detection and quantification in concrete using sinusoidal ultrasonic response signals. Before the main study on ultrasonic-based concrete damage assessment, a preliminary study was performed on deep learning-based concrete compressive strength prediction. In this study, convolutional neural networks were utilized to predict the compressive strength of concrete through its mix proportions. The Genetic algorithm was employed to find the optimum number of filters in each convolutional layer of the convolutional neural networks. The proposed framework demonstrated high accuracy in...