Loading...
Search for:
barazandegan--melissa
0.055 seconds
Simulation and Control of Particle Size Distribution in a Continuous Emulsion Polymerization Reactor
, M.Sc. Thesis Sharif University of Technology ; Shahrokhi, Mohammad (Supervisor)
Abstract
In this work, a comprehensive dynamic model has been used for vinyl acetate emulsion polymerization in a continuous reactor to predict the evolution of product particle size distribution under isothermal condition. Method of finite-volume has been applied for solving the population balance equations and the results are compared with the results obtained from moment method. Finite-volume method has been selected as a precise technique to predict sustained oscillations, which occurs in continuous emulsion polymerization. After performing sensitivity analysis and verification of system’s controllability, feed rate of surfactant and initiator have been selected as proper manipulated variables to...
Simulation and control of monomer conversion in a continuous emulsion polymerization reactor
, Article IFAC Proceedings Volumes (IFAC-PapersOnline), 7 June 2015 through 10 June 2015 ; Volume 48, Issue 8 , 2015 , Pages 315-320 ; 14746670 (ISSN) ; Shahrokhi, M ; Abedini, H ; Vafa, E ; Guay, M ; Gopaluni, B ; Huang, B ; Findeisen, R ; Sharif University of Technology
IFAC Secretariat
2015
Abstract
A detailed pseudo-bulk model has been used for prediction of conversion and particle size distribution (PSD) of vinyl acetate in a continuous emulsion polymerization reactor. Finite volume (FV) and moment techniques are applied for solving population balance equation under continuous operation. It is found that both methods can predict sustained oscillations in the monomer conversion, however the FV method matches the experimental data better than the moment method. The monomer conversion and free surfactant concentration are controlled via two single control loops. In this work, a new control strategy for controlling monomer conversion has been proposed. It has been shown that monomer...