Loading...
Search for: barzegar-khalilsarai--mahdi
0.14 seconds

    Statistical Interpolation of Non-Gaussian AR Stochastic Processes

    , M.Sc. Thesis Sharif University of Technology Barzegar Khalilsarai, Mahdi (Author) ; Amini, Arash (Supervisor)
    Abstract
    white noise or an innovation process through an all-pole filter. Applications of these processes include speech processing, RADAR signals and stock market data modeling. There exists an extensive research material on the AR processes with Gaussian innovation, however studies about the non-Gaussian case have been much more limited, while in many applications the asymptotic behavior of the signal is non-Gaussian. Non-Gaussian processes have an advantage over Gaussian ones in being capable of modeling sparsity. Assuming an appropriate non-Gaussian innovation one can suggest a more realistic description of sparse signals and predict their behavior or estimate their unknown values successfully.... 

    On String Swampland Conjectures from Black Holes Physics

    , M.Sc. Thesis Sharif University of Technology Barzegar Mirzaei, Shahrzad (Author) ; Torabian, Mahdi (Supervisor)
    Abstract
    Swampland conjectures are set of conditions that must be satisfied in a quantum field theory in order to be compatible with a theory of quantum gravity. These conditions have been deduced from the features of field theories, which are derived from the compactification of the additional dimensions of the string theory. However, it is thought that the mpatibility of these conditions with the theory of quantum gravity is independent of string theory. One of the important reasons is that the swampland conjectures can be obtained by examining the physics of black holes. Black hole is one of the quantum states of any quantum gravity theory. In this thesis, first we will have an overview of the... 

    Matrix coherency graph: A tool for improving sparse coding performance

    , Article 2015 International Conference on Sampling Theory and Applications, SampTA 2015, 25 May 2015 through 29 May 2015 ; May , 2015 , Pages 168-172 ; 9781467373531 (ISBN) Joneidi, M ; Zaeemzadeh, A ; Rahnavard, N ; Khalilsarai, M. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Exact recovery of a sparse solution for an underdetermined system of linear equations implies full search among all possible subsets of the dictionary, which is computationally intractable, while ℓ1 minimization will do the job when a Restricted Isometry Property holds for the dictionary. Yet, practical sparse recovery algorithms may fail to recover the vector of coefficients even when the dictionary deviates from the RIP only slightly. To enjoy ℓ1 minimization guarantees in a wider sense, a method based on a combination of full-search and ℓ1 minimization is presented. The idea is based on partitioning the dictionary into atoms which are in some sense... 

    Nonlinear sampling for sparse recovery

    , Article International Conference on Sampling Theory and Applications, SampTA 2015 ; 2015 , Pages 163-167 ; 9781467373531 (ISBN) Hosseini, S. A. H ; Barzegar Khalilsarai, M ; Amini, A ; Marvasti, F ; Sharif University of Technology
    2015
    Abstract
    Linear sampling of sparse vectors via sensing matrices has been a much investigated problem in the past decade. The nonlinear sampling methods, such as quadratic forms are also studied marginally to include undesired effects in data acquisition devices (e.g., Taylor series expansion up to two terms). In this paper, we introduce customized nonlinear sampling techniques that provide possibility of sparse signal recovery. The main advantage of the nonlinear method over the conventional linear schemes is the reduction in the number of required samples to 2k for recovery of k-sparse signals. We also introduce a low-complexity reconstruction method similar to the annihilating filter in the... 

    QBism is not so simply dismissed

    , Article Foundations of Physics ; Volume 50, Issue 7 , 2020 , Pages 693-707 Barzegar, A ; Sharif University of Technology
    Springer  2020
    Abstract
    QBism is one of the main candidates for an epistemic interpretation of quantum mechanics. According to QBism, the quantum state or the wavefunction represents the subjective degrees of belief of the agent assigning the state. But, although the quantum state is not part of the furniture of the world, quantum mechanics grasps the real via the Born rule which is a consistency condition for the probability assignments of the agent. In this paper, we evaluate the plausibility of recent criticism of QBism. We focus on the consequences of the subjective character of the quantum state, the issue of realism and the problem of the evolution of the quantum state in QBism. In particular, drawing upon... 

    Niobium incorporation in 2D MoSe2 for lung cancer biomarkers detection: The first-principle study of sensitivity improvement

    , Article Computational and Theoretical Chemistry ; Volume 1225 , 2023 ; 2210271X (ISSN) Barzegar, M ; Sharif University of Technology
    Elsevier B.V  2023
    Abstract
    To investigate the biomarker detection capability of the 2D MoSe2 monolayer as the lung cancer detection sensor, the interaction between the biomarker molecules and the surface of the sensor has been studied by first-principles calculations in three scenarios namely i) pristine MoSe2, ii) Nb-doped MoSe2, iii) Nb-decorated MoSe2 monolayers. In this study, it is proposed that Nb-decorated MoSe2 is a promising biosensor for detecting the two most prominent lung cancer biomarkers in the breath namely 2-butanone (C4H8O) and 1-propanol (C3H8O). The adsorption energy, charge transfer, and the equivalent sensitivity for C3H8O adsorption on Nb-decorated MoSe2 were calculated as −1.907 eV, 0.026e, and... 

    Calculation of effective parameters of high permittivity integrated artificial dielectrics

    , Article IET Microwaves, Antennas and Propagation ; Volume 9, Issue 12 , September , 2015 , Pages 1287-1296 ; 17518725 (ISSN) Barzegar Parizi, S ; Rejaei ; Sharif University of Technology
    Institution of Engineering and Technology  2015
    Abstract
    An analysis is presented of the effective electromagnetic parameters of high-permittivity, anisotropic artificial dielectrics which are built by stacking arrays of metallic elements and conventional dielectric films, with adjacent arrays shifted with respect to each other. The effective parameters of the artificial dielectric are extracted from the scattering coefficients of plane electromagnetic waves which are normally or obliquely incident on a slab of the artificial material with finite thickness. These coefficients are derived from the generalised scattering matrix of a single layer of metallic elements which is computed using the integral equation technique. Both two-dimensional and... 

    Two-dimensional materials for gas sensors: from first discovery to future possibilities

    , Article Surface Innovations ; Volume 6, Issue 4-5 , 2018 , Pages 205-230 ; 20506252 (ISSN) Barzegar, M ; Tudu, B ; Sharif University of Technology
    ICE Publishing  2018
    Abstract
    Semiconductor gas sensors have been developed so far on empirical bases, but now recent innovative materials for advancing gas sensor technology have been made available for further developments. Two-dimensional (2D) materials have gained immense attention since the advent of graphene. This attention inspired researchers to explore a new family of potential 2D materials. The superior structural, mechanical, optical and electrical properties of 2D materials made them attractive for next-generation smart device applications. There are considerable improvements and research studies on graphene, molybdenum disulfide (MoS2), tungsten disulfide (WS2), tin sulfide (SnS2), black phosphorus and other... 

    Brain tumor segmentation based on 3D neighborhood features using rule-based learning

    , Article 11th International Conference on Machine Vision, ICMV 2018, 1 November 2018 through 3 November 2018 ; Volume 11041 , 2019 ; 0277786X (ISSN); 9781510627482 (ISBN) Barzegar, Z ; Jamzad, M ; Sharif University of Technology
    SPIE  2019
    Abstract
    In order to plan precise treatment or accurate tumor removal surgery, brain tumor segmentation is critical for detecting all parts of tumor and its surrounding tissues. To visualize brain anatomy and detect its abnormalities, we use multi-modal Magnetic Resonance Imaging (MRI) as input. This paper introduces an efficient and automated algorithm based on the 3D bit-plane neighborhood concept for Brain Tumor segmentation using a rule-based learning algorithm. In the proposed approach, in addition to using intensity values in each slice, we consider sets of three consecutive slices to extract information from 3D neighborhood. We construct a Rule base using sequential covering algorithm. Through... 

    Brain tumor segmentation based on 3D neighborhood features using rule-based learning

    , Article 11th International Conference on Machine Vision, ICMV 2018, 1 November 2018 through 3 November 2018 ; Volume 11041 , 2019 ; 0277786X (ISSN) ; 9781510627482 (ISBN) Barzegar, Z ; Jamzad, M ; Sharif University of Technology
    SPIE  2019
    Abstract
    In order to plan precise treatment or accurate tumor removal surgery, brain tumor segmentation is critical for detecting all parts of tumor and its surrounding tissues. To visualize brain anatomy and detect its abnormalities, we use multi-modal Magnetic Resonance Imaging (MRI) as input. This paper introduces an efficient and automated algorithm based on the 3D bit-plane neighborhood concept for Brain Tumor segmentation using a rule-based learning algorithm. In the proposed approach, in addition to using intensity values in each slice, we consider sets of three consecutive slices to extract information from 3D neighborhood. We construct a Rule base using sequential covering algorithm. Through... 

    A reliable ensemble-based classification framework for glioma brain tumor segmentation

    , Article Signal, Image and Video Processing ; Volume 14, Issue 8 , 2020 , Pages 1591-1599 Barzegar, Z ; Jamzad, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Glioma is one of the most frequent primary brain tumors in adults that arise from glial cells. Automatic and accurate segmentation of glioma is critical for detecting all parts of tumor and its surrounding tissues in cancer detection and surgical planning. In this paper, we present a reliable classification framework for detection and segmentation of abnormal tissues including brain glioma tumor portions such as edemas and tumor core. This framework learns weighted features extracted from the 3D cubic neighborhoods regarding to gray-level differences that indicate the spatial relationships among voxels. In addition to intensity values in each slice, we consider sets of three consecutive... 

    Numerical study of Geostationary Orbit thermal cycle effects of a tubular adhesive joint: Dynamic behavior

    , Article Journal of Adhesion ; Volume 96, Issue 16 , 2020 , Pages 1431-1448 Barzegar, M ; Mokhtari, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    Space environments have a significant influence on advanced composite structures and adhesive joints. Degradation in the mechanical properties of aerospace materials changes the dynamic behavior of the structures and adhesive joints. In this paper, a typical tubular adhesive joint with material degradation due to geostationary orbit (GEO) thermal cycles has been studied numerically with Python scripts. Adhesive joint geometry and boundary conditions are the main parametric study parameters. The results show that the first non–zero natural frequencies of the clamped-free tubular adhesive joint decreased due to mechanical property degradation. A dynamic behavior comparison of the degradation... 

    WLFS: Weighted label fusion learning framework for glioma tumor segmentation in brain MRI

    , Article Biomedical Signal Processing and Control ; Volume 68 , 2021 ; 17468094 (ISSN) Barzegar, Z ; Jamzad, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Glioma is a common type of tumor that develops in the brain. Due to many differences in the shape and appearance, accurate segmentation of glioma for identifying all parts of the tumor and its surrounding tissues in cancer detection is a challenging task in cancer detection. In recent researches, the combination of atlas-based segmentation and machine learning methods have presented superior performance over other automatic brain MRI segmentation algorithms. To overcome the side effects of limited existing information on atlas-based segmentation, and the long training and the time consuming phase of learning methods, we proposed a semi-supervised learning framework by introducing a... 

    A novel cyber-physical system for the optimal heating-cooling of buildings

    , Article IEEE Transactions on Automation Science and Engineering ; 2023 , Pages 1-12 ; 15455955 (ISSN) Barzegar, M ; Farhadi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2023
    Abstract
    This paper presents a novel Cyber-Physical System (CPS) equipped with an advanced Distributed Model Predictive Control (DMPC) method with reduced order computational complexity, zero steady-state error, reduced start-up energy consumption and improved transient response for the optimal heating-cooling of buildings. The satisfactory application of this method for the optimal heating-cooling of a large-scale (6-story) building with 40 rooms is illustrated. Smart Industrial Internet of Things (IIoT) -based thermostats, a gateway and a general Quadratic Programming (QP) solver are developed. Using this hardware set-up, the simulation results for the 6-story building are verified in a small scale... 

    Effect of the Fluctuations of Quantum Chromodynamics Topological Charge on the Dispersion Relation of NJL Model

    , M.Sc. Thesis Sharif University of Technology Barzegar, Amin (Author) ; Sadooghi, Neda (Supervisor)
    Abstract
    One of the long-lived problems in the theory of quantum chromo dynamics is the violation of parity (P) and charge-parity (CP) symmetries in strong interactions. The existence of gluon configurations sourcing from topology leads to degeneracy in the vacuum structure of the theory. This phenomenon is realized by the addition of an extra term proportional to the parameter to QCD Lagrangian. Experimental estimates of neutron electric dipole, predicts a very small value for this parameter. There is no verified justification for this discrepancy. Recently at the relativistic heavy ion collider laboratory (RHIC) some experimental evidence has been found which indicates local CP violation in... 

    Evaluation of Performance Based Plastic Design Method in Dual Moment Frame-shear Wall Concrete Systems

    , M.Sc. Thesis Sharif University of Technology Barzegar, Vahid (Author) ; Bakhshi, Ali (Supervisor)
    Abstract
    Performance – based design is a new concept that has been developed in recent years. Given that roof displacement and story drifts determine the performance of the structure during an earthquake, displacement – based design has been considered to be an effective method for performance – based design. However, limiting the maximum displacement would not necessarily lead to a desirable performance; especially in long – duration earthquakes. Thus consecutive loading cycles and the effect of hysteretic energy should be taken into account. Combining displacement – based design with energy principles will lead to a suitable design method. This study presents performance – based plastic design... 

    Determinantal Processes

    , M.Sc. Thesis Sharif University of Technology Barzegar, Milad (Author) ; Alishahi, Kasra (Supervisor)
    Abstract
    Determinantal processes are a special family of stochastic processes that arise in physics (fermions), random matrices (eigenvalues), and in combinatorics (random spanning trees and non-intersecting paths). These processes have repelling property (points close to each other are chosen with low probability). Because of this repelling property, determinantal processes are approporiat for modeling some physical quantities (e.g. the position of electrons). Their probabilistic structure is described by operators on complex vector spaces and their eigenvalues. Determinantal processes have interesting properties, e.g. number of points in a region is a sum of independent Bernoulli random variables.... 

    Optimal Design of Induction MHD Generator for Electrical Power Generation from Exhaust of the Gas Turbine Power Plants

    , M.Sc. Thesis Sharif University of Technology Barzegar, Iran (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    Today, due to increasing electricity consumption and demand, the use of conventional systems such as thermal, hydro and nuclear power plants is not enough to convert energy. Over the past century, scientists have sought to discover new technologies for exploiting different forms of energy and converting them into high-efficiency electrical energy. One of these ways is to use the phenomenon of magnetohydrodynamics (magnetic fluid dynamics) to convert thermal energy directly into electrical energy. Magnetohydrodynamics is a theoretical field that studies the dynamics of fluids with electrical conductivity. Induction magneto-hydrodynamic generators use ionized hot plasma (a quasi-neutral gas of... 

    A correlative model to predict in vivo AUC for nanosystem drug delivery with release rate-limited absorption

    , Article Journal of Pharmacy and Pharmaceutical Sciences ; Volume 15, Issue 4 , 2012 , Pages 583-591 ; 14821826 (ISSN) Barzegar Jalali, M ; Mohammadi, K ; Mohammadi, G ; Valizadeh, H ; Barzegar Jalali, A ; Adibkia, K ; Nokhodchi, A ; Sharif University of Technology
    2012
    Abstract
    Purpose. Drug release from nanosystems at the sites of either absorption or effect biophase is a major determinant of its biological action. Thus, in vitro drug release is of paramount importance in gaining insight for the systems performance in vivo. Methods. A novel in vitro in vivo correlation, IVIVC, model denoted as double reciprocal area method was presented and applied to 19 drugs from 55 nano formulations with total 336 data, gathered from literature. Results. The proposed model correlated the in vitro with in vivo parameters with overall error of 12.4 ± 3.9%. Also the trained version of the model predicted the test formulations with overall error of 15.8 ± 3.7% indicating the... 

    Millimeter-wave artificial dielectric waveguides for integrated applications

    , Article IEEE MTT-S International Microwave and RF Conference 2014, IMaRC 2014 - Collocated with Intemational Symposium on Microwaves, ISM 2014, 15 December 2014 through 17 December 2014 ; 2015 , Pages 225-228 ; 9781479963164 (ISBN) Barzegar Parizi, S ; Rejaei, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    High-quality guided wave devices are key components in integrated millimeter-wave circuits. In this paper, we propose mm-wave planar dielectric waveguides based on thin, anisotropic artificial dielectric layers with very high in-plane permittivity. Waves propagating on such films are surface waves whose field exponentially decays outside the film in the vertical direction, similar to waveguides commonly used in integrated optics. The very high in-plane permittivity of the artificial dielectric layers leads to strong field confinement, and allows the implementation of relatively thin waveguides. This fact, together with the planar structure of these devices, make them highly suitable for...