Loading...
Search for:
bastankhah--mahsa
0.078 seconds
Numerical Simulation and Modeling of Thermosyphon Using PIV Method
, M.Sc. Thesis Sharif University of Technology ; Saeedi, Mohammad Hassan (Supervisor)
Abstract
Heat pipe is a device with several applications in various industries such as electronics cooling, nuclear and renewable technologies. This apparatus transfers heat from a hot source to a cold one. Thermosyphon is a special type of heat pipe that transmits heat using gravitational forces. Although scholars have performed many experiments on thermosyphon, mostly they were about the thermal characteristics of thermosyphon and rarely the hydraulic specifications of thermosyphon have been investigated. But it is clear that these two specifications (thermal, hydraulic) relate to each other closely and detailed study about their interaction may bring out better results. In this thesis, initially a...
Designing Online Algorithm for Admission Control in Payment Channel Networks
, M.Sc. Thesis Sharif University of Technology ; Maddah Ali, Mohammad Ali (Supervisor)
Abstract
Payment channel networks (PCNs) are a promising technology to improve the scalability of cryptocurrencies. Users can send instant and almost free transactions via payment channel networks and, at the same time, enjoy the security guarantees of Blockchains. In order to open a mutual payment channel, two users should send a ``channel creation" transaction to the underlying Blockchain. Through this transaction, two parties deposit some money on the Blockchain. This money, which we call the channel's capacity, can be used to send off-chain transactions between the two users. After the channel creation, the channel-holders can send each other off-chain transactions by forwarding the money back...
, M.Sc. Thesis Sharif University of Technology ; Parsafar, Gholamabbas (Supervisor)
Abstract
In 2009, a general equation of state (EOS-III) based on an effective near-neighbor pair interaction of an extended Lennard-Jones (3, 6, 12) type has been introduced as : , where is the compressibility factor, p and ρ stand for pressure and molar density , respectively, T is Temperature , and e, f and g are the temperature dependent coefficient of the equation of state . the Z_th and Z_in are the thermal and internal contributions of pressure in the compressibility factor, respectively. this equation of state gives a good description of all types of nano- and bulk –solid and bulk fluid at entire temperature and pressure ranges for which thee is experimental data. Investigation show that...
Photoelectrocatalytic Performance of Mesoporous TiO2 Nanostructures Decorated with Cu-Ag-Zn Particles for CO2 Conversion
, M.Sc. Thesis Sharif University of Technology ; Simchi, Abdolreza (Supervisor)
Abstract
The rise in carbon dioxide levels has led to the manifestation of numerous environmental challenges. Currently, the absorption and conversion of carbon dioxide into valuable fuel resources such as synthetic gas, methane, and ethylene are deemed crucial from both environmental and economic standpoints. Despite the presentation of photocatalysts such as titanium oxide and electrocatalysts such as copper, silver, and zinc, their efficiency in CO2 conversion is found to be insufficient. One potential solution to this problem is the utilization of photoelectrocatalytic CO2 recovery. In this study, the aim was to enhance the photoelectrocatalytic reduction of CO2 by designing and manufacturing...
Coating of Sewage Pipes with Appropriate Nanomaterials Aimed at Preventing Biological Growth (Algae+Biofilm)
, M.Sc. Thesis Sharif University of Technology ; Borghei, Mehdi (Supervisor) ; Ghasemi, Shahnaz (Co-Supervisor)
Abstract
Biological layers are one of the main problems related to water transfer with pipe lines which are formed through time in the inner surface of the pipes by the water nutrients. Hence, the inner surfaces in the pipe lines and water refineries should be made in order not to let these biological layers to be made. The reason is that when the biofilm is formed on these surfaces, the traversing water is polluted. Dredging of these pipes is not only necessary in most of the countries in the world and needs huge amounts of water but is also very complex and expensive.In this research, nanomaterials, namely ZnO, T〖iO〗_2،S〖iO〗_2 have been used to cover the surface of concrete and steel pipes (The...
Synthesis and Application of Preformed Viscoelastic Hydrogels in Enhanced Oil Recovery
, M.Sc. Thesis Sharif University of Technology ; Taghikhani, Vahid (Supervisor) ; Baghban Salehi, Mahsa (Supervisor)
Abstract
Preformed particle gels (PPGs) due to its advatantage over commonly used in situ gels has been successfully applied for controlling excess water production in mature oil reservoirs. Field results of using PPGs in oil fields shows that commonly used PPGs are highly sensitive to hard reservoir conditions such as high temperature and salinity and can not effectively block fractures and high permeability layers.Objects of this study are synthesis and evaluating performance of this novel polymer based hydrogel in oil reservoirs with high temperature and salinity. Central composite design ( which is a experiment design approach) was used for synthesizing thirteen gel samples and optimal sample was...
Design and Manufacture of Polymeric Nanocomposite in Order to Control the Production and Migration of Sand in Reservoirs
, Ph.D. Dissertation Sharif University of Technology ; Taghikhani, Vahid (Supervisor) ; Baghban Salehi, Mahsa (Supervisor)
Abstract
Sand production from oil reservoirs leads to various problems, such as well productivity reduction, operating equipment corrosion, and increased production costs. Therefore, controlling sand production in unconsolidated reservoirs is crucial for operating companies. Chemical injection into the formation in order to strengthen and reduce sand production is one of the most important methods of sand control. In this study, a hydrogel nanocomposite was designed and its effectiveness in sand control was investigated. Various tests were carried out to define and assess its efficacy, as follows: Morphological tests demonstrated the creation of a dense, homogeneous, and porous structure. Structural...
Butanol Production from Bagasse Sugarcane Black Liquor by Native Strain and Clostridium Acetobutylicum Species
,
M.Sc. Thesis
Sharif University of Technology
;
Shayegan, Jalaleddin
(Supervisor)
;
Vossoughi, Manouchehr
(Supervisor)
;
Sedighi, Mahsa
(Co-Supervisor)
Abstract
Considering the limitations of fossil fuels in recent years, as well as increasing demand for biofuels, it is anticipated that future attention to biofuels will increase further. Among biofuels, due to some disadvantages of bioethanol and biodiesel fuel, there is a tendency to use biobutanol, which does not have the disadvantages of the mentioned fuels. The cost of chemical production of butanol also led researchers to use biotechnology production of butanol. According to studies, butanol production can be achieved by fermenting some sugars such as glucose, xylose, and ... by anaerobic microorganism, but the cost of using these sugars has resulted in the use of natural sources of these...
Performance Evaluation of Rhamnolipid & Sophorolipid Biosurfactants Capable of Wettability Change and Oil Recovery Increase
, M.Sc. Thesis Sharif University of Technology ; Taghikhani, Vahid (Supervisor) ; Baghban Salehi, Mahsa (Supervisor) ; Mokhtarani, Babak (Co-Supervisor)
Abstract
As fossil fuels are still the world's most important source of energy, as well as the maturity of most of the world's oil reservoirs, there is a need for enhanced oil recovery methods to meet the world's increasing oil demands. MEOR methods are new and promising methods that are still in the research and development stage. One of the MEOR methods is the use of biosurfactants, which increase the oil recovery by two mechanisms: 1) reducing the interfacial tension between water and oil and 2) changing the wettability of the rock. In this study, the performance of two glycolipid biosurfactants, rhamnolipid and sophorolipid, in increasing oil recovery has been investigated. Initially, surface...
Investigation of the Effect of Asphaltene on the Stability of Water-oil Emulsion
, M.Sc. Thesis Sharif University of Technology ; Taghikhani, Vahid (Supervisor) ; Baghban Salehi, Mahsa (Supervisor) ; Masihi, Mohsen (Supervisor)
Abstract
During the production of crude oil from reservoirs, the production of quantities of formation water along with this oil, causes the crude oil does not have the necessary indicators for transportation, refining and ultimately export. The presence of water and salt along with crude oil causes corrosion of refinery and transmission equipment and makes oil unfavorable in terms of economic efficiency (both for domestic use and for export). water and salt produce stable emulsion with oil that can be stable for a long time and can not be easily separated from crude oil. Therefore, separation of water and salt from crude oil is one of the most important issues in the oil industry. Breaking this...
Providing A New Solution to Enhance Oil Recovery (Eor) by Using Properties of Imidazolium Ionic Liquids and Synthesis of Microgels
, M.Sc. Thesis Sharif University of Technology ; Taghikhani, Vahid (Supervisor) ; Baghban Salehi, Mahsa (Supervisor) ; Mokhtarani, Babak (Co-Supervisor)
Abstract
The methods of Enhanced Oil Recovery (EOR) from reservoirs have been taken into consideration recently due to the decline in oil reserves and the rise in energy demand. Studies and investigations indicate the tremendous potential of chemical approaches based on injecting ionic liquids into the porous media with the goal of improving oil recovery. Additionally, hydrogels and polymers, which are two of the process' primary materials, are thought to be good alternatives. In the current study, a hydrogel based on carboxymethyl cellulose was first created and synthesized. Ionic liquids based on imidazolium and triflate anion were then added, and their effectiveness in enhancing the properties...
Evaluation of the Surface Activity of Novel Ionic Liquids and Their Application in the Enhanced Oil Recovery Process
, M.Sc. Thesis Sharif University of Technology ; Taghikhani, Vahid (Supervisor) ; Mokhtarani, Babak (Supervisor) ; Baghban Salehi, Mahsa (Co-Supervisor)
Abstract
The following dissertation discusses Ionic Liquids (ILs) as an alternative to commercial surfactants for use in the Enhanced Oil Recovery process. Ionic Liquids came to researchers’ attention due to their environmental nature and their tolerance for high temperatures and salinity. In this work, firstly, an extensive literature review is carried out, and then, experiments are designed and performed to evaluate ILs’ surface activity and performance in a lab-scale EOR set-up. The Ionic Liquids used in this work consist of three types of methylimidazolium nitrate, [MIM]+[NO3]-, with three different alkyl chain lengths. This combination, and specifically the effect of nitrate anions on EOR and...