Loading...
Search for: behmanesh--mehrdad
0.15 seconds

    Synthesis and Characterization of Zeolitic Imidazolate Framework-8 as a Carrier for Gene Therapy Applications

    , M.Sc. Thesis Sharif University of Technology Montazeri, Farzad (Author) ; Simchi, Abdolreza (Supervisor) ; Behmanesh, Mehrdad (Co-Supervisor)
    Abstract
    Advances in genetics and biology have led to the ability to produce therapeutic genes and modify defective genes in patients' genomes, resulting in a solution to many genetic diseases. Many genetic diseases can be overcome through gene therapy by transferring therapeutic genes into the cell nucleus. However, researchers have not yet been able to develop a safe, high-efficiency carrier for the transfer of genes to the target cell, and this has become a bottleneck for the clinical applications of gene therapy. In this study, the ZIF-8 organic-metallic framework was used as a new vector for the transfer of therapeutic genes to target cells. For this purpose, ZIF-8 was synthesized by a... 

    Design of a Low Noise Amplifier without On-Chip Inductor

    , M.Sc. Thesis Sharif University of Technology Behmanesh, Baktash (Author) ; Atarodi, Mojtaba (Supervisor)
    Abstract
    In this project a wide-band inductorless Low Noise Amplifier (LNA) has been designed using 0.18 micrometer CMOS technology. The specification of this amplifier has been explored in frequency band of 330MHz to 10GHz. Wide-band input and output impedance matching, low Noise-Figure (NF), reasonable voltage gain and low power consumption are the main challenges of Low Noise Amplifier design. Without using an inductor a better overall performance of LNA in a wide frequency band as well as a lower chip area has been achieved. In this design a novel noise cancellation technique in common-gate topology has been used for lowering the Noise Figure of the LNA. Group Delay of the designed LNA, which is... 

    Design of Tunable, Multi-Mode, Multi-Path Filters

    , Ph.D. Dissertation Sharif University of Technology Behmanesh, Baktash (Author) ; Atarodi, Mojtaba (Supervisor)
    Abstract
    In this dissertation a special category of RF filters known as multi-path filters are introduced, chracterized and implemented. The center frequency of the multi-path filters can be tuned by changing the frequency of the clocks applied to the filter, which makes them attractive for use in multi-standard receivers. In this thesis, different types of multi-path filters are studied and by proposing different circuits, their various applications are covered. First, the concept of multi-path filters and their chracteristics are studied. Then a novel technique to analyze these filters based on Fourier analysis is proposed and then, based on this analysis, a new circuit architecture with reduced... 

    A low power, low phase noise, square wave LC quadrature VCO and its comprehensive analysis for ISM band

    , Article AEU - International Journal of Electronics and Communications ; Volume 65, Issue 5 , 2011 , Pages 458-467 ; 14348411 (ISSN) Atarodi, M ; Torkzadeh, P ; Behmanesh, B ; Sharif University of Technology
    2011
    Abstract
    This paper presents a phase-noise reduction technique for voltage-controlled oscillators (VCOs) using a harmonic tuned (HT) LC tank. The phase-noise suppression is achieved through almost rectangular-shaped VCO oscillating signal which effectively maximizes oscillating signal slope at zero crossing points resulting in-phase-noise degradation. In addition, by shortening down converted noise power around oscillating signal second harmonic, more phase-noise suppression has been achieved. A comprehensive analysis for frequency and amplitude deviations as high as 20% for third harmonic and its effect on output phase-noise suppression has been discussed. In the followings, a comprehensive analysis... 

    An N-Path filter design methodology with harmonic rejection, power reduction, foldback elimination, and spectrum shaping

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 67, Issue 12 , 2020 , Pages 4494-4506 Karami, P ; Banaeikashani, A ; Behmanesh, B ; Atarodi, S. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this paper, an adaptive design methodology for synthesizing a harmonic free N-path filter with reduced frequency folding is presented. System level analysis of proposed architecture shows that by adding a few extra paths with proper weights to a conventional N-path filter, several characteristics such as harmonic rejection, power reduction, foldback elimination and spectrum shaping can be achieved. The designed filter is reconfigurable to be a band-pass filter (BPF) or a band-reject filter (notch), based on the requirements. By using the nth harmonic of Local Oscillator (LO) signal, instead of the fundamental harmonic, the required input clock frequency in N-phase clock generator is... 

    A tunable-Q 4-path bandpass filter with Gm-C second-order baseband impedances

    , Article 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 244-248 ; 9781509059638 (ISBN) Rezvanitabar, A ; Babamir, S. M ; Behmanesh, B ; Atarodi, S. M ; Sharif University of Technology
    2017
    Abstract
    An active switched-capacitor 4-path bandpass filter suitable for multi-standard applications in ultra-high frequency (UHF) band with different channel bandwidths is designed and simulated in 0.18 μm CMOS technology. The baseband impedance of the filter is implemented as a second-order Gm-C low-pass filter which can be used to tune the channel bandwidth as well as the quality factor (Q) of the RF filter. The center frequency of the filter can be tuned from 100 MHz up to 1.5 GHz by changing the clock frequency applied to the filter while its bandwidth can be tuned by tuning impedance parameters in any center frequency. To do so, the baseband impedance utilizes a frequency dependent negative... 

    Analysis of imperfections in N-phase high-Q band-pass filters

    , Article IEEE International Symposium on Circuits and Systems, ISCAS 2015, 24 May 2015 through 27 May 2015 ; Volume 2015-July , May , 2015 , Pages 273-276 ; 02714310 (ISSN) ; 9781479983919 (ISBN) Nikoofard, A ; Kananian, S ; Behmanesh, B ; Atarodi, S. M ; Fotowat Ahmady, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    The effect of clock skew and duty-cycle on the performance of high-Q N-phase band-pass filters (BPFs) have been examined in this paper. Following a mathematical approach and using the analytical derivations carried out, the effects of such non-idealities as clock skew and duty-cycle error are determined in an N-path filter. It is analytically proved that image signals from all integer multiples of the clock signal, rather than just those at (1 ± kN) multiples of the clock signal, land atop the wanted RF spectrum. In a real world clock generator, with non-idealities in effect, filtering property and proper behavior of the filter is adversely affected. Finally, system level simulation along... 

    Flight envelope expansion in landing phase using classic, intelligent and adaptive controllers [electronic resource]

    , Article Journal of aircraft ; 2006, Vol. 43, No. 1 Malaek .S. M. B ; Izadi, Hojjat Allah ; Pakme, Mehrdad
    Abstract
    An expanding flight envelope in the landing phase of a typical jet transport aircraft in presence of strong wind shears using a learning capable control system (LCCS) is investigated. The idea stems fromhuman beings functional architecture that gives them the ability to do more as they age and gain more experience. With the knowledge that classical controllers lack sufficient generality to cope with nonlinear as well as uncertain phenomenon such as turbulent air, the focuse is on different types of intelligent controllers due to their learning and nonlinear generalization capabilities as candidates for the landing flight phase. It is shown that the latter class of controllers could be used... 

    An efficient graphyne membrane for water desalination

    , Article Polymer ; Volume 175 , 2019 , Pages 310-319 ; 00323861 (ISSN) Mehrdad, M ; Moosavi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Desalination of sea saline water seems a successful solution to supply clean water. For desalination, novel nanoporous membranes have been proposed as a substitute for the classic reverse osmosis (RO) membranes. The one-atom-thick graphyne membrane has shown great potential in water desalination. By applying functional groups (FGs) into the pores of the monolayer graphyne membranes, the water permeability and the ion rejection were passively increased. The effects of applying various FGs such as Hydrogen, Fluorine, Carboxyl and Amine, effect of the salt concentration, the applied pressure, and the effective diameter of the graphyne pores were determined by molecular dynamics (MD)... 

    Optimal Design of the Heliostat Field in the Solar Central Receiver Systems

    , M.Sc. Thesis Sharif University of Technology Piroozmand, Pasha (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    In a solar central system plant about 40% of energy losses occurs in the heliostat field. Furtheremore, half of the investment costs for construction of the plant is related to the heliostat field. Therefore, an optimal design of the heliostat field is necessary for reduction of levelized cost of energy in solar tower power plants. In this study, in order to optimally design the heliostat field, first energy performance of the helistat field in one year is simulated. Solar power and sun’s position at each moment of the day is determined by mathematical relations. Then, loss factors in the field are modelled and heliostat field layout is designed by an algorithm. Finally, by using PSO... 

    Simulation and Multi-Objective Optimization of a Solar Micro CCHP Using Intelligent Techniques

    , M.Sc. Thesis Sharif University of Technology Younesi, Ali (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    Today, due to the scarcity of fossil energy resources, security of energy supply, and increasing environmental concerns, we need to develop new technologies to promote energy-saving and reduce greenhouse gas emissions. One of the suitable options for this purpose is to use the simultaneous production of electric power, cooling, and heating. Meanwhile, trigeneration systems that provide part of their energy needs from the sun, due to the free solar energy source and low environmental impact, can be an ideal technology for clean and safe scattered production. The present study has suggested a trigeneration system of cooling, heating, and power generation based on the organic Rankin cycle and... 

    Optimal Design of Induction MHD Generator for Electrical Power Generation from Exhaust of the Gas Turbine Power Plants

    , M.Sc. Thesis Sharif University of Technology Barzegar, Iran (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    Today, due to increasing electricity consumption and demand, the use of conventional systems such as thermal, hydro and nuclear power plants is not enough to convert energy. Over the past century, scientists have sought to discover new technologies for exploiting different forms of energy and converting them into high-efficiency electrical energy. One of these ways is to use the phenomenon of magnetohydrodynamics (magnetic fluid dynamics) to convert thermal energy directly into electrical energy. Magnetohydrodynamics is a theoretical field that studies the dynamics of fluids with electrical conductivity. Induction magneto-hydrodynamic generators use ionized hot plasma (a quasi-neutral gas of... 

    Modeling and Optimal Design of a Solar Chimney Power Plant

    , M.Sc. Thesis Sharif University of Technology Gharagozlou, Ali (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    The power generation system of this type of power plants operates on the air flowing through the power plant’s chimney and colliding with the turbine blades within the chimney. When the solar collector warms the nearby air and thus expands the air by absorbing the sunlight, a difference is created in the density. Then, this difference in the density creates the phenomenon of buoyancy, making the air pass to the top of the chimney through the collector.This study simulated and optimized a solar chimney power plant. The simulation and optimization were performed based on the information of Manzanares Solar Chimney Power Plant in Spain (located in 150 km from the south of Madrid). It was... 

    Intelligent Control of Hybrid Vehicles based on the Simultaneous Optimization of Fuel Consumption and Pollution Emission

    , M.Sc. Thesis Sharif University of Technology Mamouri, Ali (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    The issue under discussion in this paper is to optimize the fuel consumption of the Toyota Prius hybrid car. In order to solve this problem, the ADVISOR design model used by NREL in the Matlab / Simulink environment has been used. Various parts of this model are described. The optimization performed on this issue is based on the emotional controller. This controller works by simulating learning in animals based on encouraging and punishing them. With the introduction of the controller, the model and its inclusion in the fuel consumption control and its implementation have achieved good results. In the initial state and the controller in the model, the fuel consumption was 4.9 liters per 100... 

    Active Control of Drag Force in Automobile in Order to Reduce Fuel Consumption

    , M.Sc. Thesis Sharif University of Technology Mehrafsar, Moein (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    In this thesis, an attempt has been made to provide a smart and innovative system to optimize fuel consumption in cars by using the combination of engineering sciences, aerospace, and machine learning. Considering the current challenges of societies, the economic importance of saving fuel, as well as recent developments in the fields of machine learning and reinforcement learning, this research tries to improve the performance of cars in order to minimize the air resistance force of car bodies. In this regard, deep neural networks have been used to learn the dynamics of aerodynamic forces and reinforcement learning algorithms, especially DDPG (Deep Deterministic Policy Gradient), have been... 

    The Impact of Human Capital on Labour Productivity in Manufacturing Sectors of Iran

    , M.Sc. Thesis Sharif University of Technology Narimani, Meysam (Author) ; Sepahvand, Mehrdad (Supervisor)
    Abstract
    This research has been surveyed the impact of intermediate skilled and high skilled human labor force on the productivity of manufacturing sectors by the Nelson & Phelps and also Lucas approaches. first model is related to the level of productivity and the second model is related to the growth of it. We has been prepared the needed statistics from the raw figures of iran statistics center. regression analysis has been done on the basis of panel data model by the use of stata software. the results show that not good efficiency to optimize technology factor of Cobb-Douglas model although it shows higher marginal labor productivity of high skilled human labor force. we has proposed some... 

    Design of a Wide Band Power Amplifier for Power DAC

    , M.Sc. Thesis Sharif University of Technology Hassani, Keyvan (Author) ; Sharifbakhtiar, Mehrdad (Supervisor)
    Abstract
    Today’s radio transmitters must be able to send information in several standards. One problem involved in these wide band electronic systems lies in its end part, ie power amplifier. To have a broad band width either switching must be made among several power amplifiers with narrow band width (tuned) or the transistor part of power amplifier must be the same and single and selection be made only among matching networks. In this thesis, a power amplifier with broad band width without requiring a matching network has been designed and laid out. Also considering the low breakdown voltage of the gate oxide of the today’s standard CMOS transistors, it is very difficult to get a high output power... 

    Design of a HEV’s Controller Using Learning-based Methods

    , M.Sc. Thesis Sharif University of Technology Zare, Aramchehr (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    Hybrid electric vehicles (HEV) are proving to be one of the most promising innovations in advanced transportation systems to reduce air pollution and fossil fuel consumption. EMS is one of the most vital aspects of the HEV powertrain system. This research aims to design an optimal EMS under the condition of meeting the goals of drivability control, fuel consumption reduction, and battery charge stability. The current EMS is based on the classical rule-based method derived from fuzzy logic, which guides to the suboptimal solution in episodic driving cycles. Previous experiences in implementing Reinforcement Learning (RL) suffer from late convergence, instability in tracking the driving... 

    Optimal Design of Permanent Magnet Vernier Generator for Wind Power Plants Application

    , M.Sc. Thesis Sharif University of Technology Esmailoghli, Habib (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    In recent decades, renewable energy resources (especially wind power as the fastest-growing energy source) have increasingly been employed for providing electrical energy all over the world given to the rising energy demands, reduction in non-renewable fossil fuels as well as severe restrictions applied to the utilization of these fuels because of their contribution in environmental pollution, generating greenhouse gas emissions, and consequently earth warming. The main factors in the development of wind energy systems to date are the easy access to this energy source in all seasons and its cost-effectiveness compared to other counterparts. One of the key components utilized for converting... 

    Design and Implementation of a Linear, 1 Watt, High Efficiency Power Amplifier with Controllable Output Power for UHF-RFID Application

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Sanaz (Author) ; Sharifbakhtiar, Mehrdad (Supervisor)
    Abstract
    Design and implementation of an efficient, 1 Watt, linear power amplifier (PA) with CMOS technology for UHF-RFID applications is presented in this thesis. Poor quality factor of inductors, high substrate noise and low breakdown voltage of CMOS, makes the implementation of Watt-level PAs challenging on this technology. Also the trade-off between linearity and efficiency, further hardens achieving an efficient high power linear PA. So the literature was reviewed first to come up with the appropriate structure of a linearized efficient PA. Afterwards, the structure was reformed and optimized for the application mentioned above with reasonable stability margins. Baseband relevant blocks were...