Loading...
Search for:
behzadi--m
0.208 seconds
Total 20457 records
Numerical Modeling of the Effect of Nanoparticle Concentration on Solidification Rate of Phase Change Materials in Thermal Energy Storage Systems
, Article Heat Transfer Engineering ; Volume 44, Issue 13 , 2023 , Pages 1121-1139 ; 01457632 (ISSN) ; Zerafat, M. M ; Zarei, M. J ; Behzadi, A ; Sharif University of Technology
Taylor and Francis Ltd
2023
Abstract
Considering the growing rate of energy consumption as well as significant enhancement in worldwide energy demand, it is necessary to improve the performance of energy storage, i.e., melting and solidification rates in thermal energy storage systems. Phase change materials (PCMs) with high latent heats of fusion and proper melting points can be used as alternatives in energy storage systems. The most serious shortcoming in the existing PCMs is low thermal conductivity which confines the rate of energy storage. This issue can be tackled using nanoparticles with much higher thermal conductivities conjugated with the existing PCMs. In this research, effect of nanoparticle addition into PCMs...
Chronic subdural hematoma outcome prediction using logistic regression and an artificial neural network
, Article Neurosurgical Review ; Volume 32, Issue 4 , 2009 , Pages 479-484 ; 03445607 (ISSN) ; Rashidi, A ; Zandi Toghani, M ; Behzadi, M ; Asadollahi, M ; Sharif University of Technology
2009
Abstract
Artificial neural networks (ANN) have not been used in chronic subdural hematoma (CSDH) outcome prediction following surgery. We used two methods, namely logistic regression and ANN, to predict using eight variables CSDH outcome as assessed by the Glasgow outcome score (GOS) at discharge. We had 300 patients (213 men and 87 women) and potential predictors were age, sex, midline shift, intracranial air, hematoma density, hematoma thickness, brain atrophy, and Glasgow coma score (GCS). The dataset was randomly divided to three subsets: (1) training set (150 cases), (2) validation set (75 cases), and (3) test set (75 cases). The training and validation sets were combined for regression...
Synthesis of tetrahydrothiopyrano[2,3-b]indole [60]fullerene derivatives via hetero-diels–alder reaction of c60 and α,β-unsaturated indole-2-thiones
, Article Journal of Heterocyclic Chemistry ; Volume 54, Issue 2 , 2017 , Pages 911-915 ; 0022152X (ISSN) ; Ghanbari, B ; Behzadi, M ; Baghersad, M. H ; Sharif University of Technology
HeteroCorporation
2017
Abstract
Hetero-Diels–Alder reactions of [60]fullerene with α,β-unsaturated thio-oxindoles (3a, 3b, 3c), prepared from thio-oxindole 1 and heteroaromatic aldehydes (2a, 2b, 2c), to generate tetrahydrothiopyrano[2,3-b]indole [60]fullerene cycloadducts (5a, 5b, 5c) under thermal or microwave irradiation were described. The yields were improved, and the reaction time was decreased by conducting the reaction under microwave irradiation. © 2016 Wiley Periodicals, Inc
Reducing CO2 emission from exhaust gases using molten carbonate fuel cells: a new approach
, Article International Journal of Ambient Energy ; Volume 37, Issue 4 , 2016 , Pages 331-340 ; 01430750 (ISSN) ; Astaneh, M ; Roshandel, R ; Behzadi Forough, A ; Sharif University of Technology
Taylor and Francis Ltd
2016
Abstract
The aim of this study is to couple molten carbonate fuel cell (MCFC) stack with integrated gasification combined cycle fed by refinery residues, to remove CO2 from gas turbine exhaust gases that have CO2 emission rate of 14,200 ton/year. By applying multi-objective optimisation (MOO) using genetic algorithm, the optimal values of operating load and the corresponding values of objective functions are obtained. The MOO of the MCFC system regarding two scenarios is performed. The first scenario is minimisation of cost of electricity (COE) and CO2 emission rate. Objective functions of the second scenario are the same as in the first scenario while CO2 tax is taken into account. Results show that...
Copper(ii) ions supported on functionalized graphene oxide: an organometallic nanocatalyst for oxidative amination of azolesviaC-H/C-N bond activation
, Article New Journal of Chemistry ; Volume 45, Issue 6 , 2021 , Pages 3242-3251 ; 11440546 (ISSN) ; Mahmoodi Hashemi, M ; Roknizadeh, M ; Nasiri, S ; Ramazani Saadatabadi, A ; Sharif University of Technology
Royal Society of Chemistry
2021
Abstract
Graphene oxide (GO) was chemically modified withpara-aminobenzoic acid (PABA) to immobilize copper(ii) ions on its surface and used as a nanocatalyst for the oxidative C(sp2)-H bond amination reaction. A practical method to prepare Cu2+supported onpara-aminobenzoic acid grafted on GO was reported. The prepared Cu2+@GO/PABA was characterized by FT-IR, XRD, SEM, AFM, TEM, UV-Vis, and ICP techniques. The results showed that the morphology, distribution, and loading of copper ions could be well-adjusted by grafting of PABA on GO. Moreover, just 2 mol% of Cu2+@GO-PABA could catalyze the C-H activation reaction of benzoxazole and benzothiazole with secondary amines in >94% yields. Also, the...
Comparison of invasive and non-invasive cylindrical capacitive sensors for electrical measurements of different water solutions and mixtures
, Article Sensors and Actuators, A: Physical ; Volume 167, Issue 2 , June , 2011 , Pages 359-366 ; 09244247 (ISSN) ; Golnabi, H ; Sharif University of Technology
2011
Abstract
In this study design and operation of invasive and non-invasive cylindrical capacitive sensor (CCS) designs for the electrical measurements of water, water solutions, and water mixtures are reported. Operation of the capacitance measurement module for such probes is based on the charge/discharge method. The measured capacitances and resistances for distilled water, mineral water, tap water and salt water samples are reported by using two sensor types and results are compared. The measured capacitance by invasive CCS for distilled water is about 2.28 μF and by non-invasive CCS is 31.40 pF, which shows a big difference for different probes. Such a difference is due to the electrical...
Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery
, Article Journal of Nanoparticle Research ; Volume 18, Issue 9 , 2016 ; 13880764 (ISSN) ; Mohammadi, A ; Sharif University of Technology
Springer Netherlands
2016
Abstract
Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at...
Investigation of conductivity effects on capacitance measurements of water liquids using a cylindrical capacitive sensor
, Article Journal of Applied Sciences ; Volume 10, Issue 4 , 2010 , Pages 261-268 ; 18125654 (ISSN) ; Golnabi, H ; Sharif University of Technology
2010
Abstract
In this study by using a Cylindrical Capacitive Sensor (CCS), the Electrical Conductivity (EC), effects on the capacitance measurements of the water liquids was investigated. Theoretical values of the capacitance measurements of water liquids with the cylindrical length in the range 0.5-5 cm are calculated. Our obtained results indicate that measured capacitance value by CCS depends on the liquid capacitance and reactance capacitance. Liquid capacitance value of the distilled water for permittivity of 80 is about 33.5 pF and reactance capacitance value is about 0.290 μF, when the cylindrical length value is about 1.6 cm. The reactance capacitance for the mineral, tap and dilute salt water...
Monitoring temperature variation of reactance capacitance of water using a cylindrical cell probe
, Article Journal of Applied Sciences ; Volume 9, Issue 4 , 2009 , Pages 752-758 ; 18125654 (ISSN) ; Golnabi, H ; Sharif University of Technology
2009
Abstract
In this study by using a capacitive cell probe the temperature variation of the electrical properties of the water liquids is investigated. Variation of the reactance capacitance parameter of liquids with temperature in the range of 17-60°C is measured for the plain water and water mixtures. The temperature variations of the capacitance for the cool distilled and tap water samples are studied for the range of 17-29°C obtained. Present results indicate an averaged variation of 4.69 μF/°C for the distilled water and 3.24 μF/°C for tap water in warm up process to a near room temperature. The cooling behaviors for the warm mineral, tap and salt water liquids are also investigated in this study....
Numerical Investigation of Laminar Premixed Flame Response to Acoustic Excitation
, M.Sc. Thesis Sharif University of Technology ; Farshchi, Mohammad (Supervisor)
Abstract
Flame Response to acoustic excitation which plays an important role in combustion chamber stability state may be found through numerical simulation. A finite volume code of higher order accuracy developed for compressible flows was adopted. Species equations along with a single-step irreversible reaction model were added to this non-reacting program. Changes were also made to the energy equation. Premixed methane/air flame in tubes was studied and the same problem was solved with FLUENT software. It was found that whether the Lewis number is considered constant or temperature dependent has a strong effect on flame structure and shape and that using mean values for gas properties yields out...
Theoretical Study of the Effects of a Diffuse Layer on Nonlinear Interaction of a Surface Wave with Interfacial Waves
, M.Sc. Thesis Sharif University of Technology ; Jamali, Mirmosadegh (Supervisor)
Abstract
The theory of resonant wave interaction has found considerable applications in meteorology, oceanography and limnology. It is known that the mechanism serves as an effective means of energy transfer in the atmosphere, oceans and lakes. In this project, the three-dimensional resonant interaction of a surface wave with two pairs of interfacial waves in a stratified fluid is studied theoretically. Witham’s variational method is formulated in order to apply to weak resonant interaction among waves whose amplitudes and phase angles vary slowly with position and time. The method is applied to a surface-interfacial wave interaction in a horizontally infinite two layer fluid. Combination of two...
Application of Variational Method in Analysis of Flow in an Ideal Stratified Fluid System
, Ph.D. Dissertation Sharif University of Technology ; Jamali, Mirmosadegh (Supervisor)
Abstract
Using Variational Method, two important hydrodynamic phenomena, “internal gravity waves” and “gravity currents”, are modelled theoretically in this research. Variational method as a robust technique for modelling complicated problems related to fluid mechanics gives us the ability of finding closed-form formula for predicting the behavior of the flow in an ideal fluid system. In the first part of this research, focusing on the nonlinear resonant interaction between surface and internal waves, we model the evolution of interfacial waves on the interface of a two-layer fluid system. This phenomenon play an important role in the mixture of the fluid and cascade of energy in the environment....
Photothermally heated and mesh-gridded solar-driven direct contact membrane distillation for high saline water desalination
, Article International Journal of Heat and Mass Transfer ; Volume 199 , 2022 ; 00179310 (ISSN) ; Asadollahi, M ; Mousavi, S.A ; Rajabi ghahnavieh, A ; Behzadi Sarok, M ; Khayet, M ; Sharif University of Technology
Elsevier Ltd
2022
Abstract
Photothermally heated and mesh-gridded membrane distillation (PHMD) system is proposed for desalination of high saline aqueous solutions. A triple-layered membrane, composed of a photothermal top nanofibrous layer containing polyacrylonitrile and dispersed carbon black nanoparticles and a polyvinylidene fluoride porous membrane supported on a nonwoven polyester, was prepared. A polypropylene mesh was used to hold the membrane. A 3D numerical simulation of the PHMD system was carried out by COMSOL and the appropriate length of the membrane module was determined. The effects of various operating parameters including solar radiation intensity on the permeate flux and thermal efficiency were...
Design and synthesis of new family of ionic liquids based on 2-iminium-1,3-dithiolanes: A combined theoretical and experimental effort
, Article Journal of Molecular Structure ; Vol. 1056-1057, issue. 1 , January , 2014 , p. 56-62 ; Shakourian-Fard, M ; Farvardin, M. V ; Raeesi, M ; Hashemi, M. M ; Behzadi, H ; Sharif University of Technology
2014
Abstract
An efficient method for synthesis of 2-iminium-1,3-dithiolane as a new family of ionic liquids with reaction of dithiocarbamates with methyl triflouromethanesulfonate was described. Theoretical study on the synthesized ionic liquids was also performed by quantum chemistry calculation. Geometry optimization on the ion pairs was carried out with the B3LYP/6-311++G(d,p) level of theory. The interaction energies were calculated, and corrected by the basis set superposition error (BSSE) calculated by the counterpoise method. The results of natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses indicate that the interactions occur via hydrogen bonding between oxygen...
Multi objective optimization of solid oxide fuel cell stacks considering parameter effects: Fuel utilization and hydrogen cost
, Article Journal of Renewable and Sustainable Energy ; Volume 5, Issue 5 , 2013 ; 19417012 (ISSN) ; Roshandel, R ; Sharif University of Technology
2013
Abstract
In the context of stationary power generation, fuel cell based systems are being predicted as a valuable option to tabernacle the thermodynamic cycle based power plants. In this paper, multi objective optimization approach is used to optimize the planer solid oxide fuel cell (SOFC) stacks performance using genetic algorithm technique. Multi objective optimization generates the most attractive operating conditions of a SOFC system. This allows performing the optimization of the system regarding to two different objectives. Two pairs of different objectives are considered in this paper as distinguished strategies. In the first strategy, minimization of the breakeven per-unit energy cost...
Design and operation optimization of an internal reforming solid oxide fuel cell integrated system based on multi objective approach
, Article Applied Thermal Engineering ; Volume 114 , 2017 , Pages 561-572 ; 13594311 (ISSN) ; Roshandel, R ; Sharif University of Technology
Elsevier Ltd
2017
Abstract
The interaction between design parameters and operation variables is a complex problem that affects system techno-economic performance. The aim of this paper is to optimize the design and operation of an SOFC/MGT integrated system. The problem consists of design and operation optimization of an integrated SOFC/MGT system. Decision variables including design parameters (number of SOFC cells) as well as the operation parameters (air pressure ratio, methane and air flow rates). The multi objective approach using genetic algorithm is applied considering two pairs of proposed objectives: (1) maximization of output power and minimization of the electricity cost and (2) maximization of system...
Multi objective receding horizon optimization for optimal scheduling of hybrid renewable energy system
, Article Energy and Buildings ; Volume 150 , 2017 , Pages 583-597 ; 03787788 (ISSN) ; Roshandel, R ; Sharif University of Technology
2017
Abstract
In this paper, a methodology for energy management system (EMS) based on the multi-objective receding horizon optimization (MO-RHO) is presented to find the optimal scheduling of hybrid renewable energy system (HRES). The proposed HRES which is experimentally installed in educational building comprising the PV panels, wind turbine, battery bank and diesel generator as the backup system. The data acquisition system provides input profiles for receding horizon optimizer. A mixed-integer convex programing technique is used to achieve the optimal operation regarding to two conflicting operation objectives including diesel fuel cost and battery wear cost. The Pareto frontiers are presented to...
Lifetime optimization framework for a hybrid renewable energy system based on receding horizon optimization
, Article Energy ; Volume 150 , 1 May , 2018 , Pages 617-630 ; 03605442 (ISSN) ; Roshandel, R ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
In this work, a novel convex sequence framework for real-time receding horizon operation optimization of a hybrid renewable energy system integrated with optimal sizing is presented to increase the penetration rate of renewable energy in supplying the demand. The proposed framework optimizes the entire lifetime cost of a system consisting of two main steps which are 1) design & installation and 2) operation as two sequence modules. This framework is applied to a hybrid renewable energy system which includes PV, wind turbine, batteries and a diesel generator. In the operation optimization, receding horizon strategy is used to optimize the operation schedule. Mixed integer convex programming...
Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: A promising candidate for medical applications
, Article Nanotechnology ; Volume 23, Issue 4 , 2012 ; 09574484 (ISSN) ; Imani, M ; Yousefi, M ; Galinetto, P ; Simchi, A ; Amiri, H ; Stroeve, P ; Mahmoudi, M ; Sharif University of Technology
2012
Abstract
Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses
Toward efficient functionalization of polystyrene backbone through ketene chemistry: Synthesis, characterization, and DFT study
, Article Polymers for Advanced Technologies ; Volume 34, Issue 2 , 2023 , Pages 587-596 ; 10427147 (ISSN) ; Hosseini, M ; Darroudi, M ; Behzadi, M ; Hronský, V ; Sučik, G ; Rouh, H ; Sheibani, H ; Sharif University of Technology
John Wiley and Sons Ltd
2023
Abstract
In this study, polystyrene was functionalized with Meldrum's acid toward the introduction of the ketenes (C=C=O) system to its backbone for producing a dramatically reactive intermediate. Meldrum's acid, as a ketene source, was reacted by poly(styrene-co-p-chloromethyl styrene) through a simple nucleophilic reaction to synthesize poly(styrene-co-styryl Meldrum's acid). Then, the pendant Meldrum's acid under thermal treatment converted to ketene intermediate resulting in highly reactive polystyrenes derivatives, which rapidly reacted by nucleophilic reagents to afford ultimate organic building blocks. The polystyrene derivatives were characterized using elemental analysis, FT-IR,...