Loading...
Search for: biabanaki--omid-reza
1.382 seconds

    Numerical Modeling of Contact-Impact Problems Using Polygonal Finite Element Method

    , Ph.D. Dissertation Sharif University of Technology Biabanaki, Omid Reza (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    A Polygonal finite element method without conforming mesh was introduced by the authors for modeling large deformation elastoplastic problems. In this method, the geometry and interfaces of the problem are modeled on a uniform mesh. The boundaries are defined on the uniform background mesh using the level set method. Different polygonal elements will be created at the intersection of the interface and the uniform mesh. Polygonal element shape functions are used for the interpolation. In this paper, the capability of this polygonal finite element approach for modeling large deformational frictionless dynamic contact-impact problems is investigated. Contact interfaces are modeled independent... 

    Nodal-based three-dimensional discontinuous deformation analysis (3-D DDA)

    , Article Computers and Geotechnics ; Volume 36, Issue 3 , 2009 , Pages 359-372 ; 0266352X (ISSN) Beyabanaki, S. A. R ; Jafari, A ; Omid Reza Biabanaki, S ; Ronald Yeung, M ; Sharif University of Technology
    2009
    Abstract
    This paper presents a new numerical model that can add a finite element mesh into each block of the three-dimensional discontinuous deformation analysis (3-D DDA), originally developed by Gen-hua Shi. The main objectives of this research are to enhance DDA block's deformability. Formulations of stiffness and force matrices in 3-D DDA with conventional Trilinear (8-node) and Serendipity (20-node) hexahedral isoparametric finite elements meshed block system due to elastic stress, initial stress, point load, body force, displacement constraints, inertia force, normal and shear contact forces are derived in detail for program coding. The program code for the Trilinear and Serendipity hexahedron... 

    Designing and Improving Manganese Oxide Nanoparticles as a MRI Contrast Agent

    , M.Sc. Thesis Sharif University of Technology Omid, Hamed (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    In this thesis, manganese oxide nanoparticles with about 5 nm size were synthesized via solvothermal to maximize surface and active sites for proton relaxation. The synthesized nanoparticles were coated with gentisic acid to acquire suitable colloidal stability and biocompatibility. The nanoparticles showed low cytotoxicity in MTT assay. Electrosteric mechanisim was employed for colloidal stability. This mechanisim doesn’t need high surface charge and thick coat which are vital for particles functionality. Then by cell culture eliminating and adding protamine sulfade, nanoparticles uptake were increased tremendously. In this thesis for first time Prussian blue was utilized for staining... 

    Mechanical behavior Analysis of Cancerous Cells in the Micropipette Aspiration Using Finite Element Simulations

    , M.Sc. Thesis Sharif University of Technology Ghoytasi, Ebrahim (Author) ; Naghdabadi, Reza (Supervisor) ; Bavi, Omid (Co-Supervisor)
    Abstract
    Diseases such as cancer lead to extensive conversion in the biological structure of cells. These conversions can overshadow cell function. The dynamics of a cell directly depends on how it interacts with other cells and the extracellular environment. Most of these interactions are associated with the occurrence of mechanical phenomena and are due to forces that the cell has experienced. Cell mechanics manifests itself in the Mechanotransduction, the ability of a cell to sense and respond to external forces. Cancer alters the mechanical properties of the components of the cytoskeleton. Understanding the biomechanical behavior of cells and cytoskeleton can play an important role in early... 

    , M.Sc. Thesis Sharif University of Technology Fazlali, Masoume (Author) ; Moshfegh, Ali Reza (Supervisor) ; Akhavan, Omid (Supervisor)
    Abstract
    In photocatalitic activity of titana an effective approach to achieve high charge separation efficiency and high level of sensitivity under visible light is coupling it with another semiconductor with smaller band gap and appropriate banding energy structure. achieving all mentioned above, we used bilayer structure and coupled TiO2 with hematite which its small band gap(Eg ~ 2.1 ev) is sensitive to visible light. Bilayer systems of TiO2/Fe2O3 , Fe2O3/TiO2 were fabricated by sol-gel process and variable parameter was upper layer thickness. The layers were deposited on glass substrate via sol-gel process. The upper layers were prepared in different thicknesses in two ways. First, they... 

    Scientific Naturalism: Ontological and Epistemological Analysis

    , Ph.D. Dissertation Sharif University of Technology Biabanaki, Mehdi (Author) ; Golshani, Mehdi (Supervisor)
    Abstract
    The term “scientific naturalism” is the invention of Thomas H. Huxley. He used it to describe a philosophical outlook that shunned the supernatural and adopted empirical science as the only reliable basis of knowledge about the physical, social, and moral worlds. Recent decades have witnessed a flurry of philosophical activity in the name of naturalism. Most contemporary philosophers identify themselves as naturalist, and much recent work in philosophy can be seen as part of general trend toward conducting philosophical inquiry under the umbrella of naturalistic assumptions. Today the label “naturalism” refers to a particular worldview. Nevertheless, naturalism is not a clearly defined... 

    Preparation, Characterization and Applications of Niobium Oxide Nanorods by Combined Sputtering-Thermal Oxidation Method

    , M.Sc. Thesis Sharif University of Technology karimi khaneghah, Shamim (Author) ; Moshfegh, Ali Reza (Supervisor) ; Akhavan, Omid (Supervisor)
    Abstract
    Recently, quasi 1D (Q1D) structures of materials such as nanowires, nanorods and nanobelts with high surface to volume ratio (A/V) and small grain size devoted an extensive part of researches. This is due to their unique properties and thus various applications in manufacturing of nanometric devices. Niobium pentoxide (Nb2O5) as semiconductor with wide bandgap has been applied in various fields including: electrochromic devices, gas sensors, anti-reflective coatings, capacitors, photocatalysts , field emission and recently; antibacterial systems. In this project , initially niobium thin films was deposited on Si(100) substrate using RF magnetron sputtering method and then niobium oxide... 

    A polygonal finite element method for modeling arbitrary interfaces in large deformation problems

    , Article Computational Mechanics ; Volume 50, Issue 1 , 2012 , Pages 19-33 ; 01787675 (ISSN) Biabanaki, S. O. R ; Khoei, A. R ; Sharif University of Technology
    2012
    Abstract
    In this paper, a polygonal-FEM technique is presented in modeling of arbitrary interfaces in large deformations. The method is used to model the internal interfaces and arbitrary geometries using a uniform non-conformal mesh. The technique is applied to capture discontinuous deformations in the non-conformal elements, which are cut by the interface in a uniform regular mesh. In this approach, a uniform non-conformal mesh is decomposed into sub-elements that conform to the internal interfaces. The geometry of interface is used to produce various triangular, quadrilateral and pentagonal elements at the intersection of interface with regular FE mesh, in which the extra degrees-of-freedom are... 

    A generalized finite element method for modeling arbitrary interfaces in large deformation problems

    , Article Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI, 7 September 2011 through 9 September 2011 ; September , 2011 , Pages 1306-1317 ; 9788489925731 (ISBN) Biabanaki, S. O. R ; Khoei, A. R ; Sharif University of Technology
    2011
    Abstract
    In this paper, a generalized-FEM technique is presented in modeling of arbitrary interfaces in large deformations. The method is used to model the internal interfaces and arbitrary geometries using a uniform non-conformal mesh. The technique is applied to capture independent deformations at both sides of separated element cut by the interface in a uniform regular mesh. In this approach, a uniform non-conformal mesh is decomposed into subelements that conform to the internal interfaces. The geometry of interface is used to produce various triangular, quadrilateral and pentagonal elements at the intersection of interface with regular FE mesh, in which the extra degrees-of-freedom are defined... 

    Modeling of Cohesive Crack Propagation in Saturated and Semi Saturated Porous Media

    , Ph.D. Dissertation Sharif University of Technology Barani, Omid Reza (Author) ; Khoei, Amir Reza (Supervisor) ; Mofid, Massoud (Supervisor)
    Abstract
    Modeling the water flow in cohesive fracture is a fundamental issue in the crack growth simulation of cracked concrete gravity dams and hydraulic fracture problems. Discontinuities in porous materials such as concrete, soil and rock have important role on the mechanical and hydraulic behavior of a multiphase system. The creation and propagation of discontinuities, such as cracks in a multi-physics system, lead to a complex non-linear coupled problem with continuous topological changes in the domain.In this study, a mathematical model is presented for for the analysis of dynamic fracture propagation in the saturated and semi-saturated porous media. The solid behavior incorporates a discrete... 

    Fabrication and Electrical Characterization of Graphene and Graphene-MOx Hybrid Nanostructures for Gas Sensing Applications

    , Ph.D. Dissertation Sharif University of Technology Esfandiar, Ali (Author) ; Iraji Zad, Azam (Supervisor) ; Akhavan, Omid (Co-Advisor) ; Gholami, Mohammad Reza (Co-Advisor)
    Abstract
    In this project, two types of graphene obtained from chemical and chemical vapor deposition (CVD) methods were studied for gas/vapor sensing applications . In chemical method, oxidation and exfoliation of graphite was performed in liquid phase. AFM, XPS, Raman spectroscopy and Uv-visible spectroscopy were indicated that single layers synthesis of graphene oxide (GO) sheets was formed successfully. Reduction of the GO to reduced graphene oxide (RGO) was chemically done by hydrazine as a conventional reducing agent and melatonin as a green alternative. Photocatalytic reduction and hybridization of GO with TiO2 was also studied. TEM, SEM and AFM analyses confirmed nucleation and growth of TiO2... 

    Polygonal finite element methods for contact-impact problems on non-conformal meshes

    , Article Computer Methods in Applied Mechanics and Engineering ; Vol. 269 , February , 2014 , pp. 198-221 ; ISSN: 00457825 Biabanaki, S. O. R ; Khoei, A. R ; Wriggers, P ; Sharif University of Technology
    2014
    Abstract
    In this paper, a polygonal finite element method is presented for large deformation frictionless dynamic contact-impact problems with non-conformal meshes. The geometry and interfaces of the problem are modeled independent of the background mesh based on the level set method to produce polygonal elements at the intersection of the interface with the regular FE mesh. Various polygonal shape functions are employed to investigate the capability of polygonal-FEM technique in modeling frictionless contact-impact problems. The contact constraints are imposed between polygonal elements produced along the contact surface through the node-to-surface contact algorithm. Several contact-impact problems... 

    A polygonal-FEM technique in modeling large sliding contact on non-conformal meshes: A study on polygonal shape functions

    , Article Engineering Computations (Swansea, Wales) ; Volume 32, Issue 5 , 2015 , Pages 1391-1431 ; 02644401 (ISSN) Khoei, A. R ; Yasbolaghi, R ; Biabanaki, S. O. R ; Sharif University of Technology
    2015
    Abstract
    Purpose - In this paper, the polygonal-FEM technique is presented in modeling large deformation - large sliding contact on non-conformal meshes. The purpose of this paper is to present a new technique in modeling arbitrary interfaces and discontinuities for non-linear contact problems by capturing discontinuous deformations in elements cut by the contact surface in uniform non-conformal meshes. Design/methodology/approach - The geometry of contact surface is used to produce various polygonal elements at the intersection of the interface with the regular FE mesh, in which the extra degrees-of-freedom are defined along the interface. The contact constraints are imposed between polygonal... 

    A polygonal finite element method for modeling crack propagation with minimum remeshing

    , Article International Journal of Fracture ; Volume 194, Issue 2 , 2015 ; 03769429 (ISSN) Khoei, A. R ; Yasbolaghi, R ; Biabanaki, S. O. R ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    In this paper, a polygonal finite element method is presented for crack growth simulation with minimum remeshing. A local polygonal mesh strategy is performed employing polygonal finite element method to model the crack propagation. In order to model the singular crack tip fields, the convex and concave polygonal elements are modified based on the singular quarter point isoparametric concept that improves the accuracy of the stress intensity factors. Numerical simulations are performed to demonstrate the efficiency of various polygonal shape functions, including the Wachspress, metric, Laplace and mean value shape functions, in modeling the crack tip fields. Eventually, analogy of the... 

    3D finite element modeling of shear band localization via the micro-polar Cosserat continuum theory

    , Article Computational Materials Science ; Volume 49, Issue 4 , 2010 , Pages 720-733 ; 09270256 (ISSN) Khoei, A. R ; Yadegari, S ; Biabanaki, S. O. R ; Sharif University of Technology
    2010
    Abstract
    In this paper, a micro-polar continuum model is presented based on the Cosserat theory for 3D modeling of localization phenomena. Since the classical continuum model suffers from the pathological mesh-dependence in strain localization problem, the governing equations are regularized by adding the rotational degrees-of-freedom to conventional degrees-of-freedom. The fundamental relations in three-dimensional Cosserat continuum are presented and the internal length parameters are introduced in the elasto-plastic constitutive matrix to control the shear bandwidth. The mesh independency of Cosserat model in strain-softening problem is verified and the effect of internal parameters is... 

    Optimal design of powder compaction processes via genetic algorithm technique

    , Article Finite Elements in Analysis and Design ; Volume 46, Issue 10 , 2010 , Pages 843-861 ; 0168874X (ISSN) Khoei, A. R ; Keshavarz, S ; Biabanaki, S. O. R ; Sharif University of Technology
    2010
    Abstract
    In this paper, an optimal design is performed for powder die-pressing process based on the genetic algorithm approach. It includes the shape optimization of powder component, the optimal design of punch movements, and the friction optimization of powdertool interface. The genetic algorithm is employed to perform an optimal design based on a fixed-length vector of design variables. The technique is used to obtain the desired optimal compacted component by verifying the prescribed constraints. The numerical modeling of powder compaction simulation is applied based on a large deformation formulation, powder plasticity behavior, and frictional contact algorithm. A Lagrangian finite element... 

    Epidemiology and Networks

    , M.Sc. Thesis Sharif University of Technology Ashrafi Amineh, Rasa (Author) ; Haji Sadeghi, Mir Omid (Supervisor) ; Razvan, Mahammad Reza (Supervisor)
    Abstract
    Networks and the epidemiology of directly transmitted infectious diseases are fun-damentally linked. The foundations of epidemiology and early epidemiological models were based on population wide random-mixing, but in practice each individual has a finite set of contacts to whom they can pass infection; the ensemble of all such contacts forms a network. Knowledge of the structure of the network allows models to compute the epidemic dynamics at the population scale from the individual-level behaviour of infections.Motivated by the analysis of social networks, we study a model of random net-works that has both a given degree distribution and a tunable clustering coefficient.We consider two... 

    The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 20 , October , 2012 , Pages 15423–15432 Esfandiar, A. (Ali) ; Ghasemi, S. (Shahnaz) ; Irajizada, A. (Azam) ; Akhavana, O. (Omid) ; Gholami, M. R. (Mohammad Reza) ; Sharif University of Technology
    2012
    Abstract
    Reduced graphene oxide (RGO) was used to improve the hydrogen sensing properties of Pd and Pt-decorated TiO2 nanoparticles by facile production routes. The TiO2 nanoparticles were synthesized by sol–gel method and coupled on GO sheets via a photoreduction process. The Pd or Pt nanoparticles were decorated on the TiO2/RGO hybrid structures by chemical reduction. X-ray photoelectron spectroscopy demonstrated that GO reduction is done by the TiO2 nanoparticles and Ti–C bonds are formed between the TiO2 and the RGO sheets as well. Gas sensing was studied with different concentrations of hydrogen ranging from 100 to 10,000 ppm at various temperatures. High sensitivity (92%) and fast response time... 

    The Synthesis of Graphene-Nanobubbles and Investigation of their Potential Synergistic Effect on Bacterial Cells

    , Ph.D. Dissertation Sharif University of Technology Jannesari, Marziyeh (Author) ; Akhavan, Omid (Supervisor) ; Maddah Hosseini, Hamid Reza (Supervisor) ; Bakhsi, Bita (Co-Supervisor)
    Abstract
    Recently, nanotechnology has promised to create and/ or improve therapeutic methods which in turn remain minimum side effects by employing synergistic effects of nanostructures. However, a comprehensive understanding of the interactions between nanostructures and building blocks of the biological systems (cells) is essential to create innovative therapeutic methods and compound and also predict their behavior for upcoming applications. In this thesis for the first time, synergistic effects of graphene-nanobubbles in interactions with bacterial (as the simplest model) cells were investigated. Therefore, at the first step, production of nanobubbles (NBs) in the presence of two-dimensional... 

    Fabrication of Graphene-WO3 Nanocomposites as Photocatalyst in the Visible Light Region

    , M.Sc. Thesis Sharif University of Technology Choobtashani, Mohammad (Author) ; Akhavan, Omid (Supervisor)
    Abstract
    WO3 is known as a photocatalyst in the visible light region, but with lower efficiency compared to more interesting semiconductor photocatalysts such as TiO2 and ZnO. Many attempts have been done to increase the efficiency of this photocatalyst by incorporating metal and metal oxide nanoparticles or recently carbon nanotubes.On the other hand, application of graphene, as an unrolled carbon nanotube, for increasing the photocatalytic activity of TiO2 and ZnO has shown positive results. Furthermore, it was reported that such semiconductor photocatalysts (and very recently WO3) can photocatalytically reduce the chemically exfoliated graphene oxide sheets under UV-vis irradiation.
    In this...