Loading...
Search for: biglarian--h
1.383 seconds

    Evaluation of a transient borehole heat exchanger model in dynamic simulation of a ground source heat pump system

    , Article Energy ; Volume 147 , March , 2018 , Pages 81-93 ; 03605442 (ISSN) Biglarian, H ; Abbaspour, M ; Saidi, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The performance of a vertical ground source heat pump system (GSHPS) largely depends on the fluid temperature leaving the borehole heat exchanger (BHE) that may be affected by the short-term behavior of the BHE. Although considerable research has been carried out to analyze the short-term transient response of the BHEs, few studies have investigated its impact on dynamic simulation of GSHPS. Therefore, this paper presents a numerical approach based on a transient BHE model to evaluate the performance of a residential GSHPS over short and long timescales. The numerical results are compared with the results of EnergyPlus software. It is shown that the proposed model can appropriately predict... 

    Economic and environmental assessment of a solar-assisted ground source heat pump system in a heating-dominated climate

    , Article International Journal of Environmental Science and Technology ; 2018 , Pages 1-8 ; 17351472 (ISSN) Biglarian, H ; Saidi, M. H ; Abbaspour, M ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2018
    Abstract
    In recent years, increasing attention has been paid to the use of renewable energy sources in building sector. The ground source heat pumps are a promising alternative for heating and cooling applications. Despite the high coefficients of performance and significant environmental benefits, their performance may deteriorate over the long-term operation if the annual ground loads are not well balanced. An appropriate solution is the use of hybrid ground source heat pump system through which some portion of the thermal loads can be offset by supplemental components. The aim of this study is to assess the feasibility of a solar-assisted ground source heat pump system for heating a detached house... 

    A numerical model for transient simulation of borehole heat exchangers

    , Article Renewable Energy ; Volume 104 , 2017 , Pages 224-237 ; 09601481 (ISSN) Biglarian, H ; Abbaspour, M ; Saidi, M. H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A numerical model is developed to simulate the borehole heat exchanger both in the short and long time. In this regard, the computational domain is divided into the inside and outside borehole regions. A two-dimensional finite volume method is implemented in a cylindrical coordinate system for modeling of the outside borehole. Also, a thermal resistance-capacity model is presented for the borehole cross section. This model is extended to take into account the fluid transport through the U-tube and the temperature variation of the borehole components with depth. The governing equations of the two regions are solved iteratively in each time step. The proposed model is verified with the... 

    Economic and environmental assessment of a solar-assisted ground source heat pump system in a heating-dominated climate

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 7 , 2019 , Pages 3091-3098 ; 17351472 (ISSN) Biglarian, H ; Saidi, M. H ; Abbaspour, M ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    In recent years, increasing attention has been paid to the use of renewable energy sources in building sector. The ground source heat pumps are a promising alternative for heating and cooling applications. Despite the high coefficients of performance and significant environmental benefits, their performance may deteriorate over the long-term operation if the annual ground loads are not well balanced. An appropriate solution is the use of hybrid ground source heat pump system through which some portion of the thermal loads can be offset by supplemental components. The aim of this study is to assess the feasibility of a solar-assisted ground source heat pump system for heating a detached house... 

    Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts

    , Article Journal of Thermal Analysis and Calorimetry ; 2017 , Pages 1-19 ; 13886150 (ISSN) Hosseinnezhad, R ; Akbari, O. A ; Hassanzadeh Afrouzi, H ; Biglarian, M ; Koveiti, A ; Toghraie, D ; Sharif University of Technology
    2017
    Abstract
    In the present study, the turbulent flow of water/Al2O3 nanofluid in a tubular heat exchanger with two twisted-tape inserts has been numerically investigated in the three-dimensional coordinate. This numerical simulation has been done by using FVM, and all of the equations have been discretized by second-order upwind method. For coupling velocity–pressure equations, SIMPLEC algorithm has been used. The investigated parameters of the present study are Reynolds numbers at the range of 10,000–30,000, the effect of twist ratio of twisted-tape inserts from 2.5 to 4, co-swirl flow and counter-swirl flow of two twisted-tapes inside the tube and volume fractions of nanofluid from 1 to 4%. The... 

    Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 132, Issue 1 , April , 2018 , Pages 741-759 ; 13886150 (ISSN) Hosseinnezhad, R ; Akbari, O. A ; Hassanzadeh Afrouzi, H ; Biglarian, M ; Koveiti, A ; Toghraie, D ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    In the present study, the turbulent flow of water/Al2O3 nanofluid in a tubular heat exchanger with two twisted-tape inserts has been numerically investigated in the three-dimensional coordinate. This numerical simulation has been done by using FVM, and all of the equations have been discretized by second-order upwind method. For coupling velocity–pressure equations, SIMPLEC algorithm has been used. The investigated parameters of the present study are Reynolds numbers at the range of 10,000–30,000, the effect of twist ratio of twisted-tape inserts from 2.5 to 4, co-swirl flow and counter-swirl flow of two twisted-tapes inside the tube and volume fractions of nanofluid from 1 to 4%. The... 

    Atheroprone sites of coronary artery bifurcation: Effect of heart motion on hemodynamics-dependent monocytes deposition

    , Article Computers in Biology and Medicine ; Volume 133 , 2021 ; 00104825 (ISSN) Biglarian, M ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Atherosclerosis as a common cardiovascular disease is a result of both adverse hemodynamics conditions and monocyte deposition within coronary arteries. It is known that the adhesion of monocytes on the arterial wall and their interaction with the vascular surface are one of the main parameters in the initiation and progression of atherosclerosis. In this work, hemodynamic parameters and monocyte deposition have been investigated in a 3D computational model of the Left Anterior Descending coronary artery (LAD) and its first diagonal branch (D1) under the heart motion. A one-way Lagrangian approach is performed to trace the monocyte particles under different blood flow regimes and heart motion... 

    Study of Capillary Pressure Effect on Multiphase Flow in Hydrocarbon Reservoirs

    , M.Sc. Thesis Sharif University of Technology Biglarian, Hassan (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    One of the most important issues in the petroleum industry, is how to increase the oil production from hydrocarbon reservoirs. The optimum design of an enhanced oil recovery process needs the knowledge on the physical phenomena of the working flow in oil reservoirs. An important aspect of any oil recovery process is the effectiveness of process fluid in removing oil from the rock pores at microscopic scales, in a way that it determines the success or failure of the recovery process. Meanwhile, one of the most important factors on the fluid mobility and as a result the microscopic mobility efficiency is the pressure difference between different phases in narrow paths of porous media. This... 

    Prediction of erosive wear locations in centrifugal compressor using CFD simulation and comparison with experimental model

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 2 , 2019 ; 16785878 (ISSN) Biglarian, M ; MomeniLarimi, M ; Ganji, B ; Ranjbar, A ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Erosive wear is one of the efficiency reduction causes in centrifugal compressors. The presence of suspended solid particles in the fluid causes deformations in different parts of the compressor, especially blades of the impeller. Therefore, erosion not only decreases the part lifetime by destruction of blades form, but also increases energy losses. For this reason, specifying the erosion locations and choosing a suitable material have an important effect on optimum functionality of the machine. In this paper, erosion locations of a compressor impeller by using computational fluid dynamics (CFD) in high temperature and pressure are attained and compared with experimental model. The... 

    Multiphase modeling of powder flow in an ejector of solar-driven refrigeration system by eulerian-lagrangian approach

    , Article Nanotechnology Applications for Solar Energy Systems ; 2023 , Pages 313-336 ; 978-111979123-2 (ISBN); 978-111979114-0 (ISBN) Biglarian, M ; Najafi, A ; Larimi, M ; Parhizkari, M ; Sharif University of Technology
    wiley  2023
    Abstract
    The ejectors are the type of vacuum or pressure-based pump widely applicable in power engineering, thermal systems, and new solar-driven refrigeration systems. Streams inside the ejectors are complex, and it is not easy to describe the best possible flows and design by considering different hydrothermal properties. Nowadays, nanofluids are considered as a method for increasing the heat transfer rate in heat pipes, heat exchangers, and different parts of solar-driven systems which these progress reported and categorized in literature. In this study, the design parameters and optimization of an ejector for a solar-based refrigeration system, for generation vacuum, and consequently, maximum... 

    Computational investigation of stenosis in curvature of coronary artery within both dynamic and static models

    , Article Computer Methods and Programs in Biomedicine ; Volume 185 , 2020 Biglarian, M ; Momeni Larimi, M ; Hassanzadeh Afrouzi, H ; Moshfegh, A ; Toghraie, D ; Javadzadegan, A ; Rostami, S ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and Objective: Blood flow variation during cardiac cycle is the main mechanism of atherosclerotic development which is dependent on. Methods: The present work mainly tends to investigate stenosis effect in dynamic curvature of coronary artery. This paper presents numerical investigations on wall shear stress profiles in three-dimensional pulsatile flow through curved stenotic coronary arteries for both static and dynamic model. In order to do so, three-dimensional models related to the curved arteries with two degrees of stenosis (30% and 50%). Results: Lower amount of wall shear stress is found near the inner wall of artery distal to the plaque region (stenosis) and in both... 

    The effect of the second excitation frequency mode under different conditions on the fluid streaming and microparticles acoustophoresis with the aim of separating biological cells

    , Article Computer Methods and Programs in Biomedicine ; Volume 184 , 2020 Hosseini, M ; Hasani, M. A ; Biglarian, M ; Amoei, A. H ; Toghraie, D ; Mehrizi, A. A ; Rostami, S ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and objective: In this study, the effect of the second excitation frequency mode under different conditions on the fluid streaming and its microparticles displacement is investigated. Methods: For this purpose, some variable parameters such as the particle diameter, microchannel aspect ratio, and applied frequency modes have been selected to study. The resulted acoustic streaming was scrutinized to understand the physics of the problem under different geometrical and input conditions. Finally, the effect of the increasing the microparticle size and aspect ratio of the microchannel, simultaneously, has been evaluated. Results: The results demonstrated that increasing the... 

    H2O based different nanofluids with unsteady condition and an external magnetic field on permeable channel heat transfer

    , Article International Journal of Hydrogen Energy ; Volume 42, Issue 34 , 2017 , Pages 22005-22014 ; 03603199 (ISSN) Biglarian, M ; Rahimi Gorji, M ; Pourmehran, O ; Domairry, G ; Sharif University of Technology
    2017
    Abstract
    This paper investigates numerically the problem of unsteady magnetohydrodynamic nanofluid flow and heat transfer between parallel plates due to the normal motion of the porous upper plate. The governing equations are solved via the fourth-order Runge-Kutta method. Different kind of nanoparticles is examined. The effects of kind of nanoparticle, nanofluid volume fraction, expansion ratio, Hartmann number, Reynolds number on velocity and temperature profiles are considered. Also effect of different types of nanoparticles is examined. Results indicate that velocity decreases with increase of Hartmann number due to effect of Lorentz forces. Rate of heat transfer increase with increase of... 

    Numerical study of the effect of hemodynamic variables on LDL concentration through the single layer of the Left Anterior Descending coronary artery (LAD) under the heart pulse

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 236, Issue 7 , 2022 , Pages 994-1008 ; 09544119 (ISSN) Biglarian, M ; Seyedhossein, S. S ; Firoozabadi, B ; MomeniLarimi, M ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Heart attack is one of the most common causes of death in the world. Coronary artery disease is the most recognized cause of heart attack whose onset and progression have been attributed to low-density lipoprotein (LDL) passing through the wall of the artery. In this paper, hemodynamic variables as well as the concentration of LDL through the coronary porous artery at the Left Anterior Descending coronary artery (LAD), and its first diagonal branch (D1) under the heart motion investigated using computational simulation. The geometry that has been studied in this paper is the first bifurcation of Left Anterior Descending (LAD) that has been placed on a perimeter of hypothetical sphere... 

    Targeted drug delivery with polydisperse particle transport and deposition in patient-specific upper airway during inhalation and exhalation

    , Article Respiratory Physiology and Neurobiology ; Volume 308 , 2023 ; 15699048 (ISSN) Biglarian, M ; MomeniLarimi, M ; Firoozabadi, B ; Inthavong, K ; Farnoud, A ; Sharif University of Technology
    Elsevier B.V  2023
    Abstract
    Identifying the deposition pattern of inhaled pharmaceutical aerosols in the human respiratory system and understanding the effective parameters in this process is vital for more efficient drug delivery to this region. This study investigated aerosol deposition in a patient-specific upper respiratory airway and determined the deposition fraction (DF) and pressure drop across the airway. An experimental setup was developed to measure the pressure drop in the same realistic geometry printed from the patient-specific geometry. The unsteady simulations were performed with a flow rate of 15 L/min and different particle diameters ranging from 2 to 30 µm. The results revealed significant flow... 

    Modeling Flow and Fat Particle Deposition in Coronary Arteries

    , M.Sc. Thesis Sharif University of Technology Biglarian, Mohit (Author) ; Firoozabadi, Bahar (Supervisor) ; Saeedi, Mohammad Saeed (Co-Advisor)
    Abstract
    In this thesis, flow hemodynamic parameters and white blood cell deposition on the 3- D of coronary artries of heart coronary walls are studied. At first, numerical simulation of blood flow and without the presence of white cells is performed. Then, using the Lagrangian approach, white blood cells as solid particles are tracked considering forces such as drag force, weight, buoyancy, Saffman lift force, virtual mass in one way coupling method. this particle representive of white blood cells and play significant role in low density lipoprotein (LDL) deposition.The results show that a low shear region occurs on myocardial wall. maximum flow velocity near the bifurcation towards epicardial wall... 

    Modeling of a Hybrid Ground Source Heat Pump System with Solar Thermal Collector and Phase Change Materials

    , Ph.D. Dissertation Sharif University of Technology Biglarian, Hassan (Author) ; Abbaspour, Majid (Supervisor) ; Saeedi, Mohammad Hassan (Supervisor)
    Abstract
    In recent years, ground source heat pumps (GSHPs) have received increasing attention for space heating and cooling, and domestic hot water production due to their high energy performance and low environmental impacts. The most common type of ground heat exchanger used in the GSHP systems is borehole heat exchanger (BHE) that consists of U-shaped tubes placed in the vertical boreholes. In this system, the heat is absorbed from or rejected to the ground by circulation of a fluid through the ground loop. The GSHP systems provide high seasonal performance factors when the ground loads are well balanced over the year. However, most buildings in cold or hot climates have unbalanced loads. When the... 

    Machine learning identification framework of hemodynamics of blood flow in patient-specific coronary arteries with abnormality

    , Article Journal of Cardiovascular Translational Research ; Volume 16, Issue 3 , 2023 , Pages 722-737 ; 19375387 (ISSN) Farajtabar, M ; Larimi, M. M ; Biglarian, M ; Sabour, D ; Miansari, M ; Sharif University of Technology
    Springer  2023
    Abstract
    In this study, we put forth a new deep neural network framework to predict flow behavior in a coronary arterial network with different properties in the presence of any abnormality like stenosis. An artificial neural network (ANN) model is trained using synthetic data so that it can predict the pressure and velocity within the arterial network. The data required to train the neural network were obtained from the CFD analysis of several geometries of arteries with specific features in ABAQUS software. The proposed approach precisely predicts the hemodynamic behavior of the blood flow. The average accuracy of the pressure prediction was 98.7%, and the average velocity magnitude accuracy was... 

    Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM

    , Article Journal of Central South University ; Volume 24, Issue 3 , 2017 , Pages 675-682 ; 20952899 (ISSN) Mosayebidorcheh, S ; Rahimi Gorji, M ; Ganji, D. D ; Moayebidorcheh, T ; Pourmehran, O ; Biglarian, M ; Sharif University of Technology
    Central South University of Technology  2017
    Abstract
    This work focuses on transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties. A hybrid numerical algorithm which combines differential transformation (DTM) and finite difference (FDM) methods is utilized to theoretically study the present problem. DTM and FDM are applied to the time and space domains of the problem, respectively. The accuracy of this method solution is checked against the numerical solution. Then, the effects of some applicable parameters were studied comparatively. Since a broad range of governing parameters are investigated, the results could be useful in a number of industrial and engineering... 

    Numerical and experimental analysis of drug inhalation in realistic human upper airway model

    , Article Pharmaceuticals ; Volume 16, Issue 3 , 2023 ; 14248247 (ISSN) Momeni Larimi, M ; Babamiri, A ; Biglarian, M ; Ramiar, A ; Tabe, R ; Inthavong, K ; Farnoud, A ; Sharif University of Technology
    MDPI  2023
    Abstract
    The demand for a more efficient and targeted method for intranasal drug delivery has led to sophisticated device design, delivery methods, and aerosol properties. Due to the complex nasal geometry and measurement limitations, numerical modeling is an appropriate approach to simulate the airflow, aerosol dispersion, and deposition for the initial assessment of novel methodologies for better drug delivery. In this study, a CT-based, 3D-printed model of a realistic nasal airway was reconstructed, and airflow pressure, velocity, turbulent kinetic energy (TKE), and aerosol deposition patterns were simultaneously investigated. Different inhalation flowrates (5, 10, 15, 30, and 45 L/min) and...